e Whatdo X_train and y_train actually look like?

Lo [

Out([4]:

Th: 1518

Qut[5]:

localhost

4 # tells us that the first 60,0%¢ .
5 X_train, X _test = X.iloc[:60000], X.iloc[60000:]

6 y_train, y_test = y.iloc[:60000].astype(int), y.iloc[60000:].astype(int)

1 X _train

pixell pixel2 pixel3 pixeld ... pixel781 pixel782 pixel783 [NV EKL:T:!
0 0 0 0 0 e 0 0]
1 0 0 0 0 .. 0 0 0 0
2 0 0 0 0 e D 0 0
59997 0 0 0 0 Sl 0 0 0
59998 0 0 0 0 we 0 0 0 0
59999 0 0 0 0 .. 0 0 0 0
60000 rows x 784 columns
1 y_train
%) 5
1 0
2 4
59997 5
59998 6
59999 8

Name: class, Length: 60000, dtype: int64

2% =170

localhost

In [6]: 1 X_train.iloc[98]

Out[6]: pixell 0
pixel2 0
pixel3 0

pixel782 0
pixel783 0
pixel784 0
Name: 98, Length: 784, dtype: int64

e the se onci row of the image,

|

e The first 28 pixels are the first row of the imagge
and so on. To view the image, we can reshapeée

In [7]: 1 X_train.iloc[98].to_numpy().reshape((28, 28))

Out[7]: array([[o0, 0, @0, ..., 0, O, O]
10 B B wawy 0y B @1
0, 0, 0 9, 0, 0.

0, 0, 0, .. 9, 0, 0]
Qi By 05 wsay @5 0; 0Ol
0, 0, 0 0, 0, 0]

\woji'céi C ffmcﬁ(/v\‘- \ ’

Model #2: Multinomial logistic regressicn‘r/l\J

e Multinomial logistic regression, or softmax regression, predicts the probability that an image 3_5,- =

}@784

belongs to each class.

P(image x; is of digit j) = P(y; = j|x;) =

Here, jcouldbe 0,1, 2, ..., 9.

f-"‘l’W\ASd c‘ﬁ o (wr?:i :"??d- 0

{ ‘] Oﬂ(él""jée_’“

\0ji N ¢ f{[mc'l"?(/v\‘-

Model #2: Multinomial logistic regressi

}@784

e Multinomial logistic regression, or softmax regression, predicts the probability that an image f,- =
belongs to each class.

P(image x; is of digit j) = P(y; = j|x;) =

Here, j could be O, 1.2 ...9:

seftman /fwc‘ﬁw ;E;) ' 0

localhost

Model #2: Multinomial logistic regression ./

R784

e Multinomial logistic regression, or softmax regression, predicts the probability that an image 3_5,- =
belongs to each class.

eu_}j Aug(;éz)

P(image x; is of digit j) = P(y; = j|x;) = i
k=0 ek’ i

Here, jcouldbe 0,1, 2, ..., 9.

[87]:

localhost

1 util.plot_model coeff1c1ents(mode1 _log.coef)

Class 0 Coefficients Class 1 Coefficients

Class 2 Coefficients

-L

Class 3 Coefficients

="
o o

"
= |
] I

R
. o

| |

Class 8 Coefficients

l.-_ _'_l fl .

il
.L:ll ll'J

i} ..I-.

g

| |

Class 4 Coefficients

i el R
T "‘""a__:'
® .et "
g =8 y

F-

Class 9 Coefficients

ol

3 -:.. 4
.._ '-l

[87]:

localhost

1 util.plot_model coeff1c1ents(mode1 _log.coef)

Class 0 Coefficients Class 1 Coefficients Class 2 Coefficients

-L

Class 3 Coefficients
="
4- i. B a l'
L3 I
B B 23 n ﬁ

R
. o

| | |

Class 8 Coefficients

Class 4 Coefficients

1
T "‘""a__:'

- B .et .
g =8 y

F-

localhost

X

Principal component analysis (PCA)

e Principal component analysis (PCA) is an unsupervised learning technique used for dimensionality reduction.

e |t'll allow us to take:
X_train, which has 60,000 rows and 784 columns, and transform it into

= train_approx, which has 60,000 rows and p columns, where p is as small as we want (e.g. p = 2).

N

i

localhost

» A

€ Principal component analysi

e Principal component analysis (PCA) is an unsupervised learning technique used for dimensionality reduction.

e |t'll allow us to take:
= X _train, which has 60,000 rows and 784 columns, and transform it into
» X_train_approx, which has 60,000 rows and p columns, where p is as small as we want (e.g. p = 2).

e |t creates p new features, each of which is a linear combination of all existing 784 features.

new feature 1i = (0.05 - pixel 1;+ 0.93 - pixel 2;1—. ..—0.35 - pixel 784;

new feature 2‘= —0.06 - pixel 1;+ 0.5 - pixel 2;+ ..+ 0.04 - pixel 784+,

These new features are chosen to capture as much variability (information) in the original data as possible.

e How? The details are out of scope for us, but it leverages the singular value decomposition from linear algebra:

X=UxyT

FUALTL_LUNIPUTICIILO =2)

localhost

e Once T1t, pca cantransform X_train into a 2-column matrix in a way that retains the

bulk of the information:

in. [91]:

Out[91]:

In [93]:

Out[93]:

1 b &
2 X

(60000, 2)

1 X_train_approx

array(q eaCl/\ ! MA

| =51.8)5,

—178 05,
[130.61,
:—173.44,

shape

-392.17]

-160.08]

5:59]
24.72]

R6OOOOX784 N 60000x2

train_approx = pca.transform(X_train)
_train_approx.

X 'ffvej‘«ff%!
1,? I st 2 valas

"\(7 ah\kl S AX '90¢§*;l1k1

