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e In Lectures 11-19, we focused on building models for regression.

In regression, we predict a continuous target variable, y, using some features, X.

e In the past few lectures, we switched our focus to building models for classification.

In classification, we predict a categorical target variable, y, using some features, X.
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Example: TV show ratings

e Suppose we have the ratings that several customers of a streaming service gave to two popular TV shows: Modern

Family and Stranger Things.

In [32]¢ util.show_ratings()
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e The data naturally falls into three groups, or clusters, based on users with similar preferences.

All we're given are the ratings each customer gave to the two shows; the customers aren't already part of any group.
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Clustering
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e Goal: Given a set of n data points stored as vectors in Rd, Xis X5 66 3 X,,and a positive integer k, place the data points into k
1s A2 n

clusters of nearby points.

In the scatter plot below,n = 9 and d = 2.

In: 1331 util.show_ratings()
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Rating for Modern Family

e Think of clusters as colors; in other words, the goal of clustering is to assign each point a color, such that points of the same color

are similar to one another.

* Note, unlike with regression or classification, there is no "right answer" that we're trying to predict — there is no y! This is what makes

clustering unsupervised.
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e Some values of k seemed more intuitive than othe a hyperparameter that we'll need to tune.

More on this later.
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Reflections on choosing a centroid

e Some values of k seemed more intuitive than others; k is a hyperparameter that we'll need to tune.

More on this later.

e For afixed k, some clusterings "looked" better than others; we'll need a way to quantify this.

e As we did at the start of the second half of the course, we'll formulate an objective function to minimize. Specifically, we'll minimize
inertia, /:

1> Hys - -, d) = total squared distance
of each point Xx;
[N A to its closest centroid 4;

« Lower values of inertia lead to better clusterings; our goal is to find the set of centroids /41, i, . . . {{; that minimize inertia, I.
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Clusters for 3 centroids:

(2,7),(8,4),(3,7)
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Rating for Stranger Things
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1 util.visualize_centroids([(2, 7), (8, 4), (3, 7)])

Rating for Modern Family
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In [3]: 1 util.visualize centroids([(2, 7), (8, 4), (3, 7)1)

Clustefs for 3 centroids:
(2,7),(8,4),(3,7)
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Reflections on choosing a centroid

e Some values of kK seemed more intuitive than others; k is a hyperparameter that we'll need to tune.

More on this later.

e For afixed k, some clusterings "looked" better than others; we'll need a way to quantify this.

o As we did at the start of the second half of the course, we'll formulate an objective function to minimize.

Specifically, we'll minimize inertia, /: /
L Lo [ Pyftagee]
I(py, @y, - - - » My) = total squared distance i
2 I/ &'\ -’/\——AD “ of each point X; M‘ ‘ee"‘n
yA

to its closest centroid 4,

'
e Lower values of e);ﬁa Ipes to bett clupiterings ZUngw 0 find the set of centroids p;, U5, . .. ﬁk that minimize

inertia, /. ( ’ =
X A,

Wi )
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EECS 398 Winter 2025 Remote Office Hours see

Recall inertia is defined as follows:
I(uq, fy, ..., H;) = total squared distance

of each point x;

to its closest centroid y

2, Who can see your messages? Recording on

To: Waiting room participants v

Suppose we arrange the dataset bell;)‘qint k =% 2 clusters, What is the minimum possible inertia?

15 >
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Minimizing inertia

EECS 398 Winter 2025 Remote Office Hours

e Goal: Find the centroids ﬁl, ﬁz, s 53 [[k that minimize inertia:

I(uy, Hy, ..., H,) = total squared distance

of each point Xx;

to its closest centroid 4

2, Who can see your messages? Recording on

To: Waiting room participants v

Type message here...

Ty @

e Issue: There is no efficient way to find the centroids that minimize inertia!

e There are k" possible assignments of points to clusters; it would be computationally infeasible to try them all.
It can be shown that finding the optimal centroid locations is NP-hard. ‘ o

% x % %r S ; =5 Pu;ez%t Co[om\f?g
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Minimizing inertia
e Goal: Find the centroids ﬁl, /72, s 53 [[k that minimize inertia:

saquared distance

I(ﬁl, ﬁz, R /’—Zk) = total
0t each point x;

to its closest centroid 4

f
©

e Issue: There is no efficient way to find the centroids that minimize inertia!

e There are k" possible assignments of points to clusters; it would be computationally infeasible to try them all.

It can be shown that finding the optimal centroid locations is NP-hard.

e \WWe can't use calculus to minimize I, either — we use calculus to minimize continuous functions, but the assignment
of a point x; to a centroid 4 ; is a discrete operation.

71 )
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e Fortunately, there's an efficient algorithm that (tries to) find the centroid locations that minimize inertia. The resulting
clustering technique is called k-means clustering.

Note that this has no relation to k-nearest neighbors, which we used for both regression and classification. Remember that clustering is an unsupervised technique!

0. Randomly initialize k centroids.

There are other ways of initializing the centroids as well.

1. Assign each point to the nearest centroid. CoO [ oY €ad/\ Po(\n'l_ Da §e d 0N

Clage st %
A/ 2. Move each centroid to the center of its group.

We compute the center of a group by taking the mean of the group's coordinates.l
wiov{ ‘/&.Q Xél ',"D ‘f&e
. . . ( m{-&/ P :{5-
3. Repeat steps 1 and 2 until the centroids stop changing!

This is an iterative algorithm! lelf
o
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Why does k-means work?

EECS 398 Winter 2025 Remote Office Hours

e On each iteration, inertia can only stay the same or decrease - it cannot increase.

I(uy, fy, ..., 4, ) = total squared distance

of each point Xx;

CO l 0 { mo Ve to ltS CloseSt CentrOId M.] 2, Who can see your messages? Recording on

To: Waiting room participants v

* Why? Step L and|step 2 alyernate minimizing inertia in different ways: -

= |n Step 1, we assign each point to the nearest centroid; this reduces the squared distance of each point to its

closest centroid.
= |n Step 2, we move the centroids to the center (mean position) of their groups; this reduces the total
squared distance from a centroid to the points assigned to it.

1 D
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Restart|Reassign Points

K-Means Algorithm
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The elbow method

 For several different values of k, let's compute the inertia of the resulting clustering, using the scatter plot from the previous slide.

In [15]: 1 util.show_elbow()

Inertia vs. k in
k-means clustering of ratings data

here, e matusl chice of ks
3

160

140

1204

100

Inertia

80
60

z:: —
I ———

PR g Ty

k (number of clusters)

e The elbow method says to choose the k that appears at the elbow of the plot of inertia vs. k, since there are diminishing returns for

using more than k clusters.

Above, we see an elbow at k = 3, which gives us the k that matches our natural intuition in this example.

33.1>
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In [27]: 1 util.color_ratings(title='Iteration 4', show_distances=[(0, 2), (1, 2)], labels=[0, 1, 2, 2, 5, 5, 5, 7, 7])

Iteration 4

Rating for Stranger Things

2.5

Rating for Modern Family
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