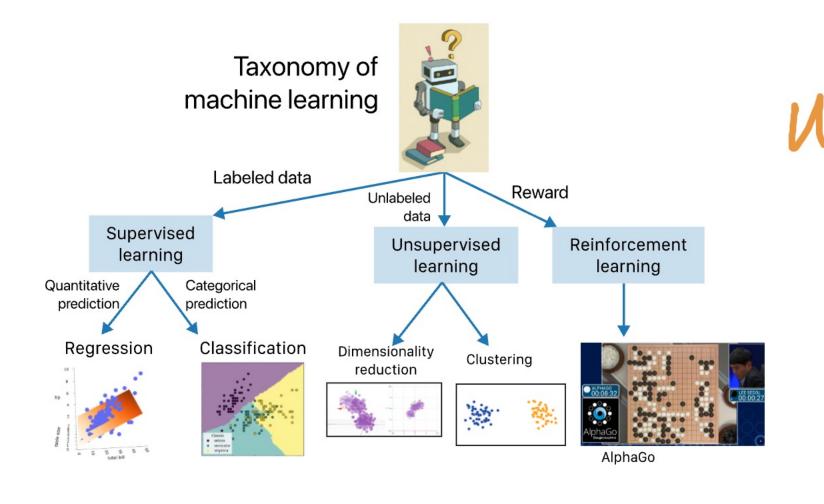


Audio You are screen sharing Stop share



The taxonomy of machine learning

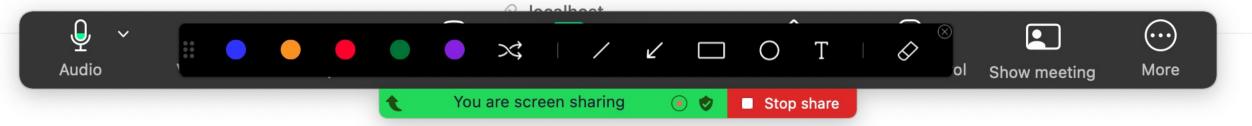


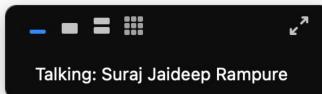
supervised learning

• In Lectures 11–19, we focused on building models for **regression**. In regression, we predict a **continuous** target variable, *y*, using some features, *X*.

• In the past few lectures, we switched our focus to building models for classification.

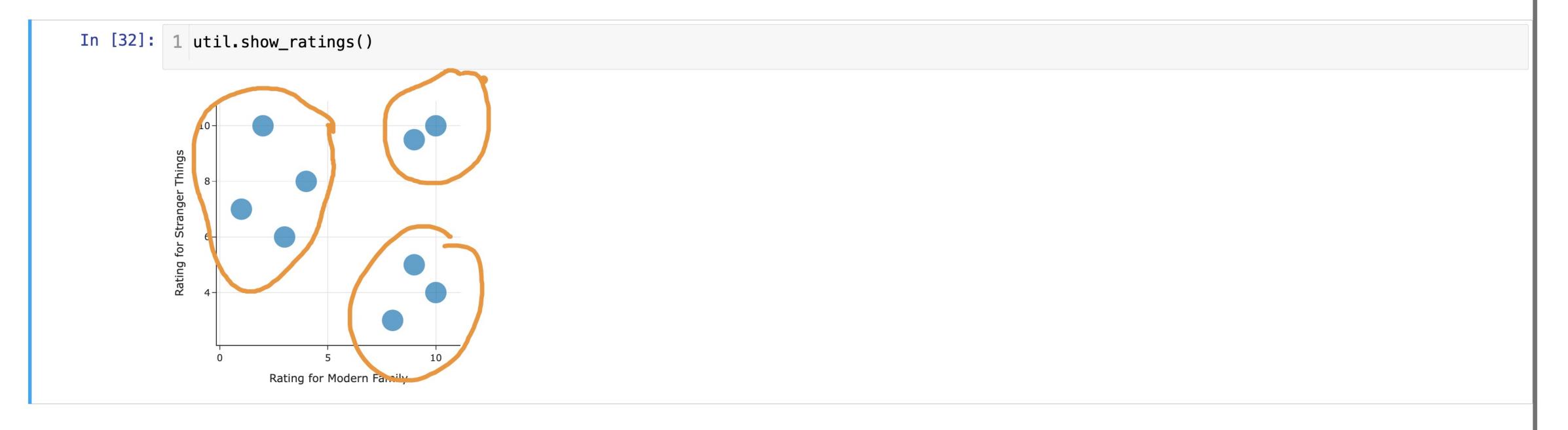
In classification, we predict a categorical target variable, y, using some features, X.





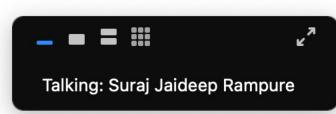
Example: TV show ratings

• Suppose we have the ratings that several customers of a streaming service gave to two popular TV shows: *Modern Family* and *Stranger Things*.



• The data naturally falls into three groups, or clusters, based on users with similar preferences.

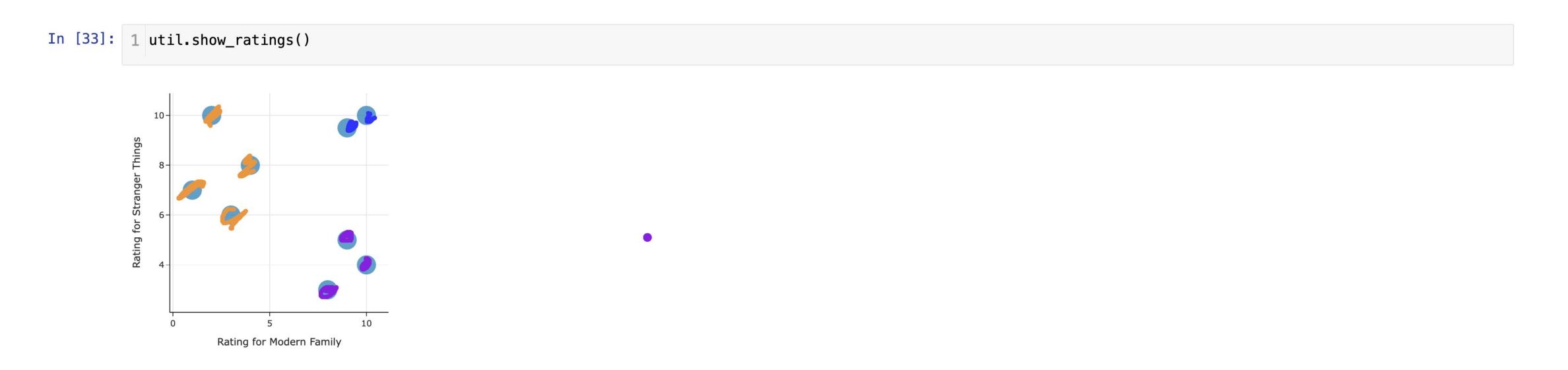
All we're given are the ratings each customer gave to the two shows; the customers aren't already part of any group.



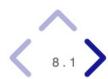
Clustering

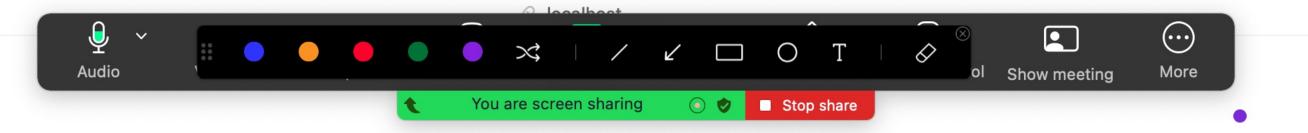
• Goal: Given a set of n data points stored as vectors in \mathbb{R}^d , \vec{x}_1 , \vec{x}_2 , ..., \vec{x}_n , and a positive integer k, place the data points into k clusters of nearby points.

In the scatter plot below, n = 9 and d = 2.

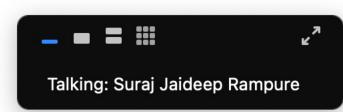


- Think of clusters as **colors**; in other words, the goal of clustering is to assign each point a color, such that points of the same color are similar to one another.
- Note, unlike with regression or classification, there is no "right answer" that we're trying to predict there is no y! This is what makes clustering **unsupervised**.



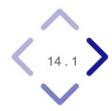


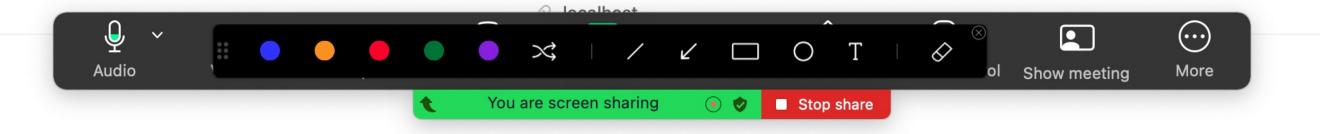
number of clusters

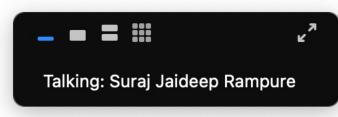


Reflections on choosing a centroid

• Some values of k seemed more intuitive than others; k is a **hyperparameter** that we'll need to tune. More on this later.





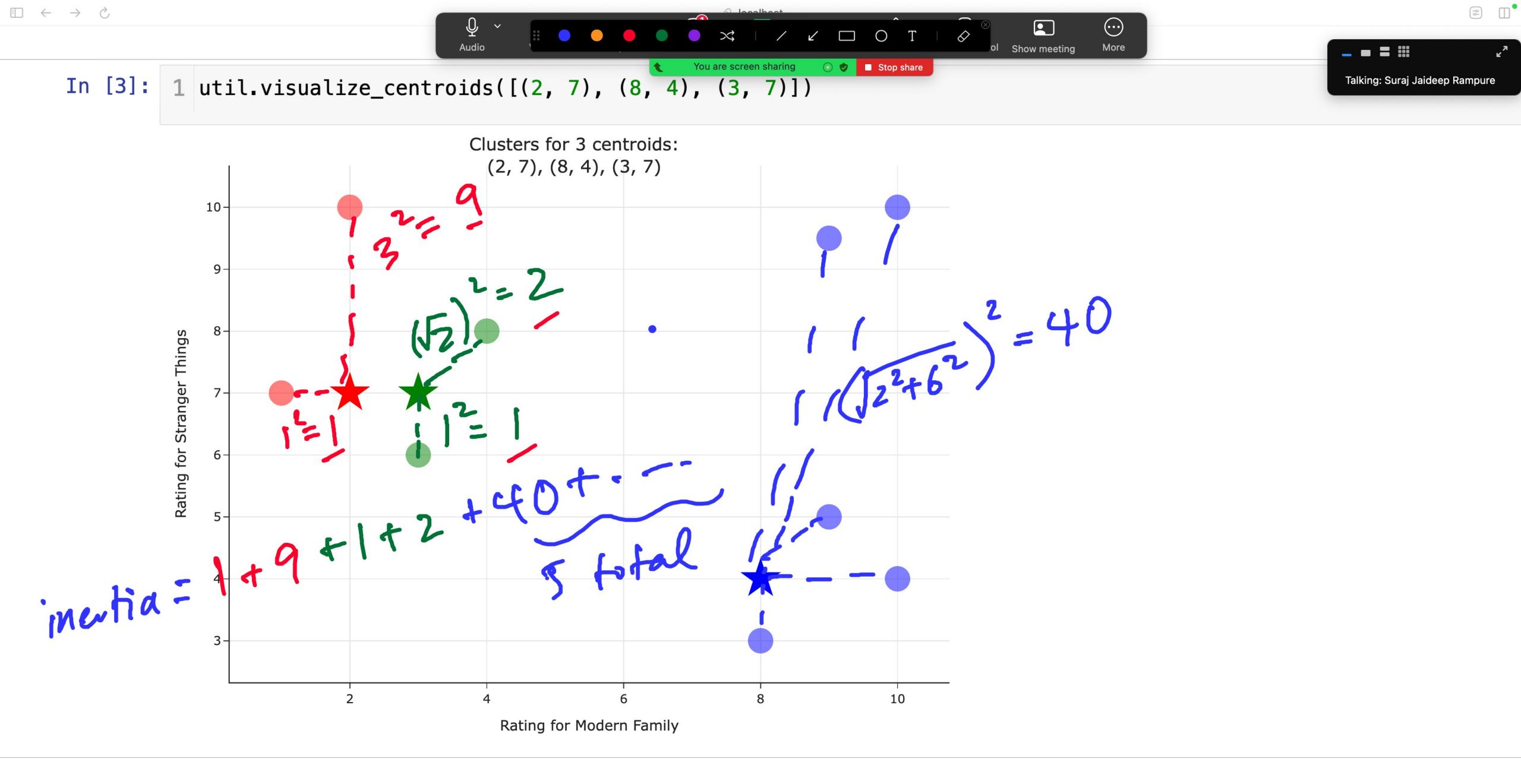


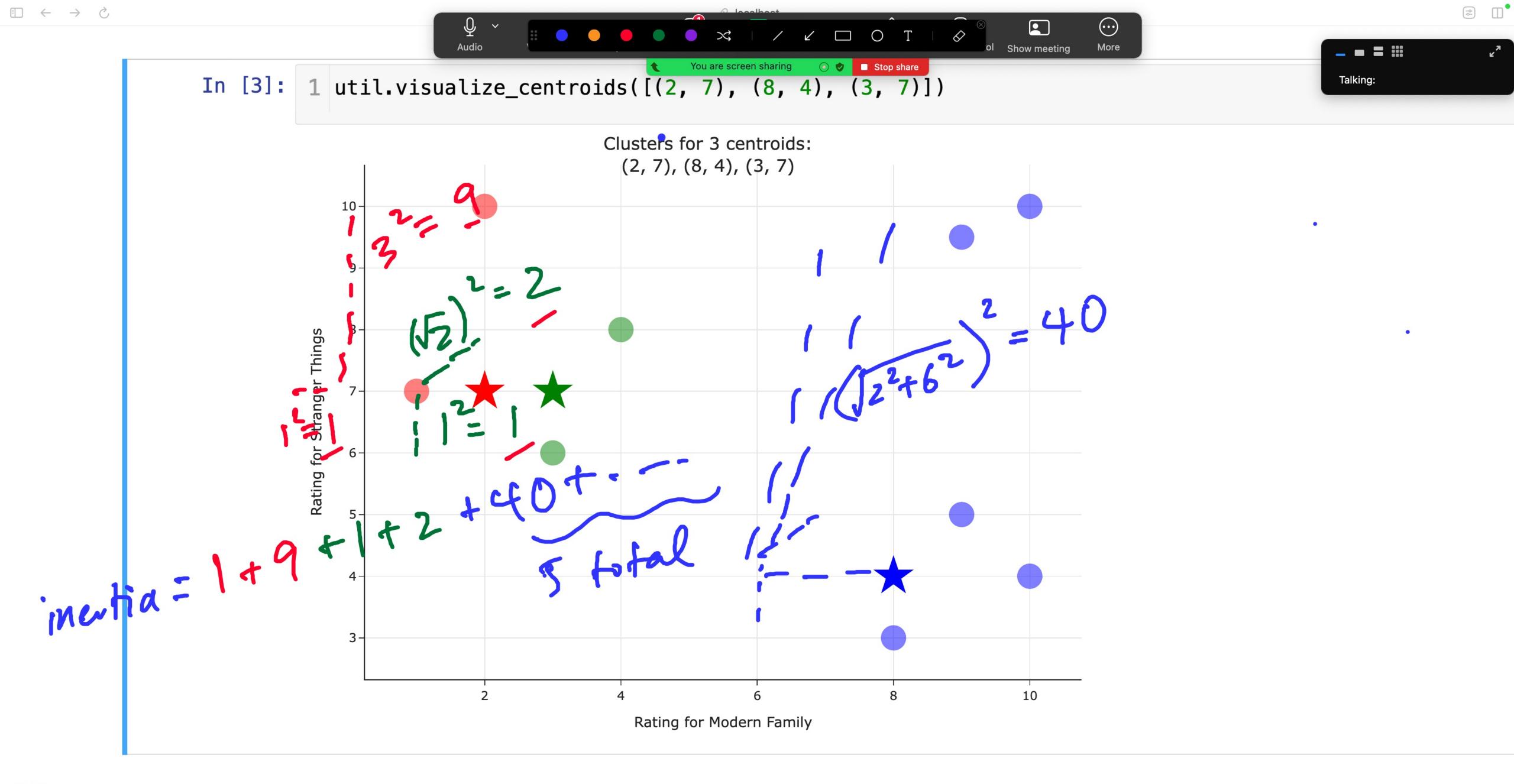
Reflections on choosing a centroid

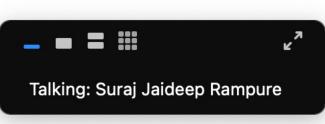
- Some values of k seemed more intuitive than others; k is a **hyperparameter** that we'll need to tune. More on this later.
- ullet For a fixed k, some clusterings "looked" better than others; we'll need a way to quantify this.
- As we did at the start of the second half of the course, we'll formulate an objective function to minimize. Specifically, we'll minimize inertia, I:

$$I(\vec{\mu}_1, \vec{\mu}_2, \dots, \vec{\mu}_k) = \text{total squared distance}$$
 of each point \vec{x}_i to its closest centroid $\vec{\mu}_j$

• Lower values of inertia lead to better clusterings; our goal is to find the set of centroids $\vec{\mu}_1, \vec{\mu}_2, \dots \vec{\mu}_k$ that **minimize inertia**, I.







Reflections on choosing a centroid

- ullet Some values of k seemed more intuitive than others; k is a **hyperparameter** that we'll need to tune. More on this later.
- ullet For a fixed k, some clusterings "looked" better than others; we'll need a way to quantify this.
- As we did at the start of the second half of the course, we'll formulate an **objective function** to minimize.

Specifically, we'll minimize **inertia**, I:

fically, we'll minimize **inertia**,
$$I$$
:

$$I(\vec{\mu}_1, \vec{\mu}_2, \dots, \vec{\mu}_k) = \text{total squared distance}$$
of each point \vec{x}_i
to its closest centroid $\vec{\mu}_j$

• Lower values of mertia lead to better clusterings our goal is to find the set of centroids $\vec{\mu}_1, \vec{\mu}_2, \ldots \vec{\mu}_k$ that **minimize**

inertia,
$$I$$
.

Stop share

- = ::: Talking:

Meeting chat

2 Who can see your messages? Recording on

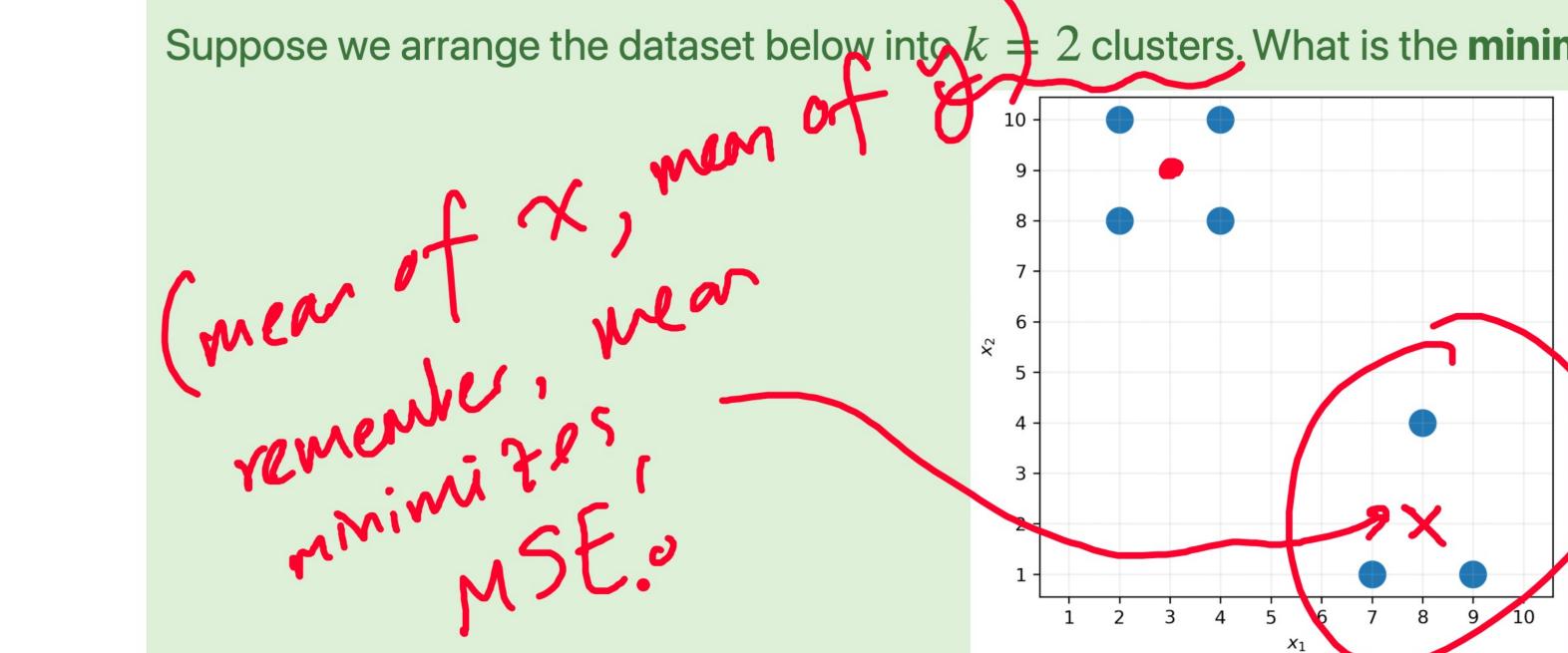
EECS 398 Winter 2025 Remote Office Hours

Activity

Recall, inertia is defined as follows:

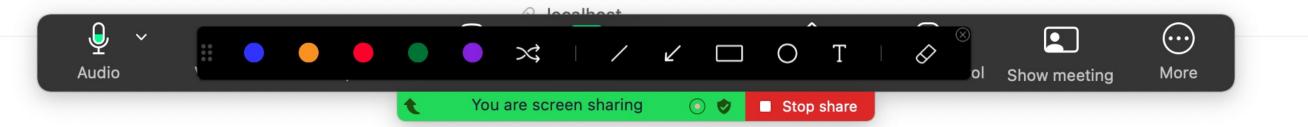
$$I(\vec{\mu}_1, \vec{\mu}_2, \dots, \vec{\mu}_k) = \text{total squared distance}$$
 of each point \vec{x}_i to its closest centroid $\vec{\mu}_j$

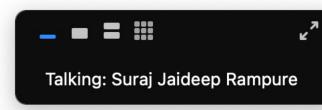
Suppose we arrange the dataset below into $k \neq 2$ clusters. What is the minimum possible inertia?



where do we place
controid?
how do | define
the center?

Type message here...

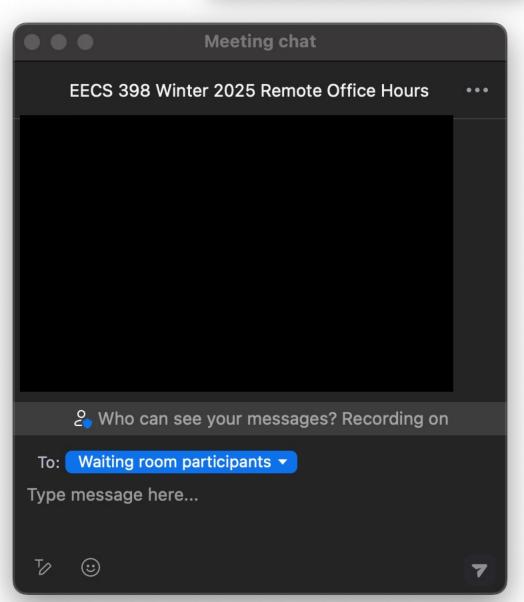




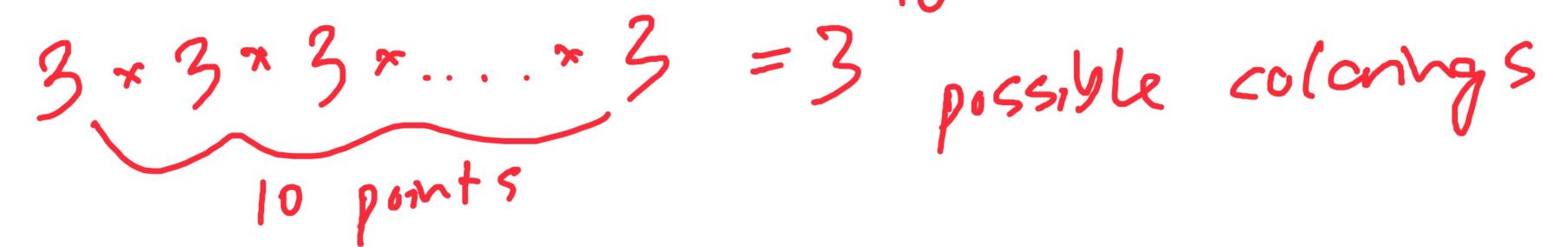
Minimizing inertia

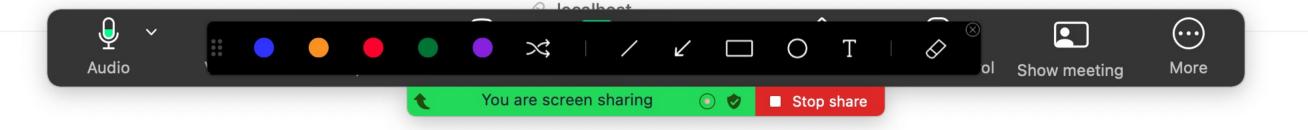
• **Goal**: Find the centroids $\vec{\mu}_1, \vec{\mu}_2, \dots, \vec{\mu}_k$ that minimize inertia:

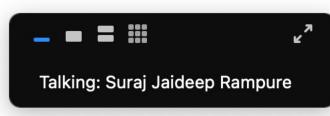
$$I(\vec{\mu}_1, \vec{\mu}_2, \dots, \vec{\mu}_k) = \text{total squared distance}$$
 of each point \vec{x}_i to its closest centroid $\vec{\mu}_j$



- Issue: There is no efficient way to find the centroids that minimize inertia!
- There are k^n possible assignments of points to clusters; it would be computationally infeasible to try them all. It can be shown that finding the optimal centroid locations is NP-hard.





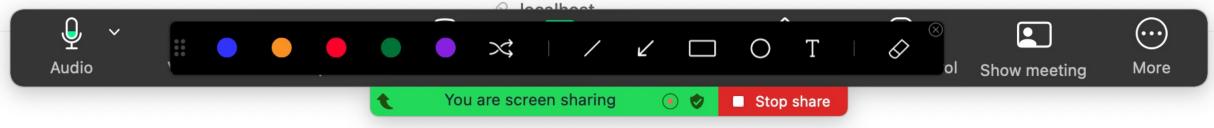


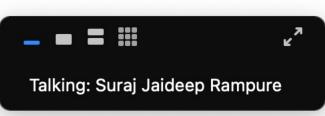
Minimizing inertia

• **Goal**: Find the centroids $\vec{\mu}_1, \vec{\mu}_2, \dots, \vec{\mu}_k$ that minimize inertia:

$$I(\vec{\mu}_1, \vec{\mu}_2, \dots, \vec{\mu}_k) = \text{total squared distance}$$
 of each point \vec{x}_i to its closest centroid $\vec{\mu}_j$

- Issue: There is no efficient way to find the centroids that minimize inertia!
- There are k^n possible assignments of points to clusters; it would be computationally infeasible to try them all. It can be shown that finding the optimal centroid locations is NP-hard.
- We can't use calculus to minimize I, either we use calculus to minimize continuous functions, but the assignment of a point \vec{x}_i to a centroid $\vec{\mu}_i$ is a discrete operation.





k-means clustering (i.e. Lloyd's algorithm)

• Fortunately, there's an efficient algorithm that (tries to) find the centroid locations that minimize inertia. The resulting clustering technique is called k-means clustering.

Note that this has no relation to k-nearest neighbors, which we used for both regression and classification. Remember that clustering is an unsupervised technique!

0. Randomly initialize k centroids.

There are other ways of initializing the centroids as well.

1. Assign each point to the nearest centroid.

color each point based on closest &

2. Move each centroid to the **center** of its group.

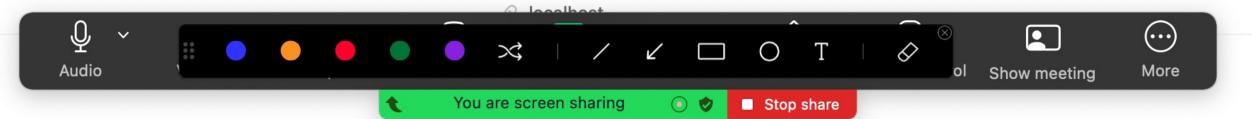
We compute the center of a group by taking the mean of the group's coordinates.

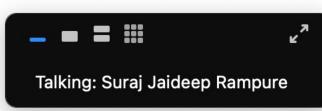
nove the to the

3. Repeat steps 1 and 2 until the centroids stop changing!

This is an iterative algorithm!

center of its



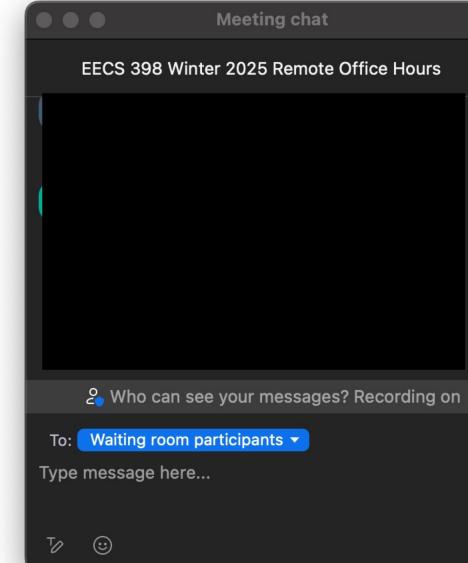


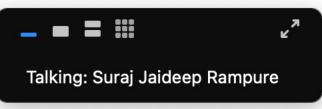
Why does k-means work?

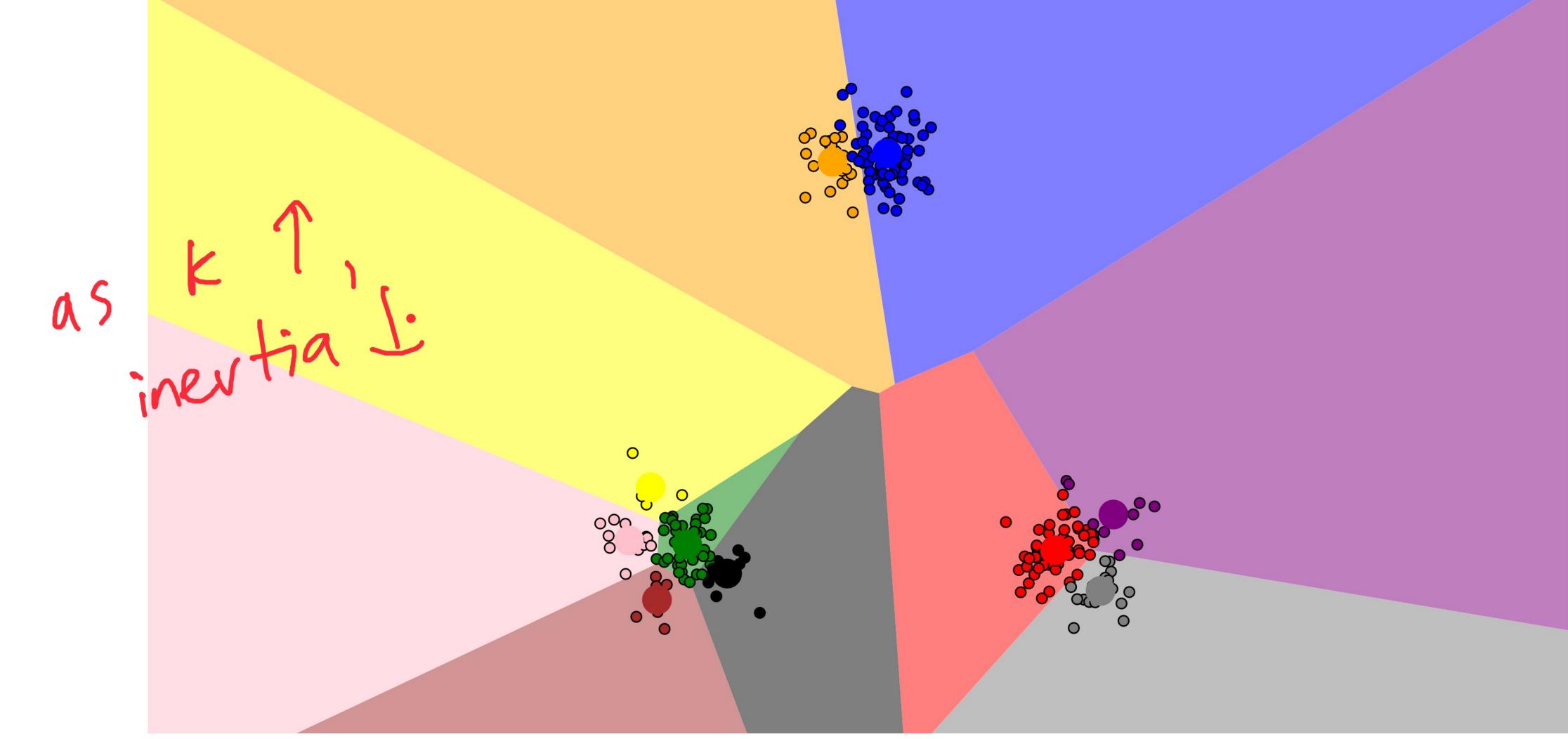
• On each iteration, inertia can only stay the same or decrease – it cannot increase.

$$I(\vec{\mu}_1,\vec{\mu}_2,\ldots,\vec{\mu}_k)=$$
 total squared distance of each point \vec{x}_i to its closest centroid $\vec{\mu}_j$

- In Step 1, we assign each point to the nearest centroid; this reduces the squared distance of each point to its closest centroid.
- In Step 2, we move the centroids to the center (mean position) of their groups; this reduces the total squared distance from a centroid to the points assigned to it.

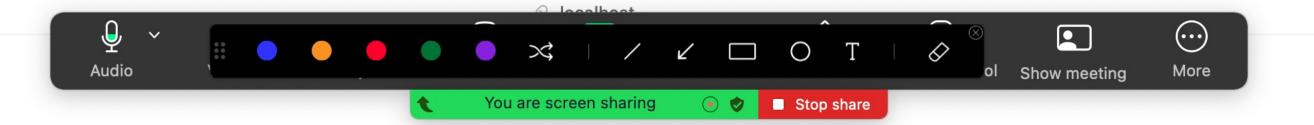


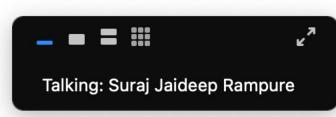




Restart Reassign Points

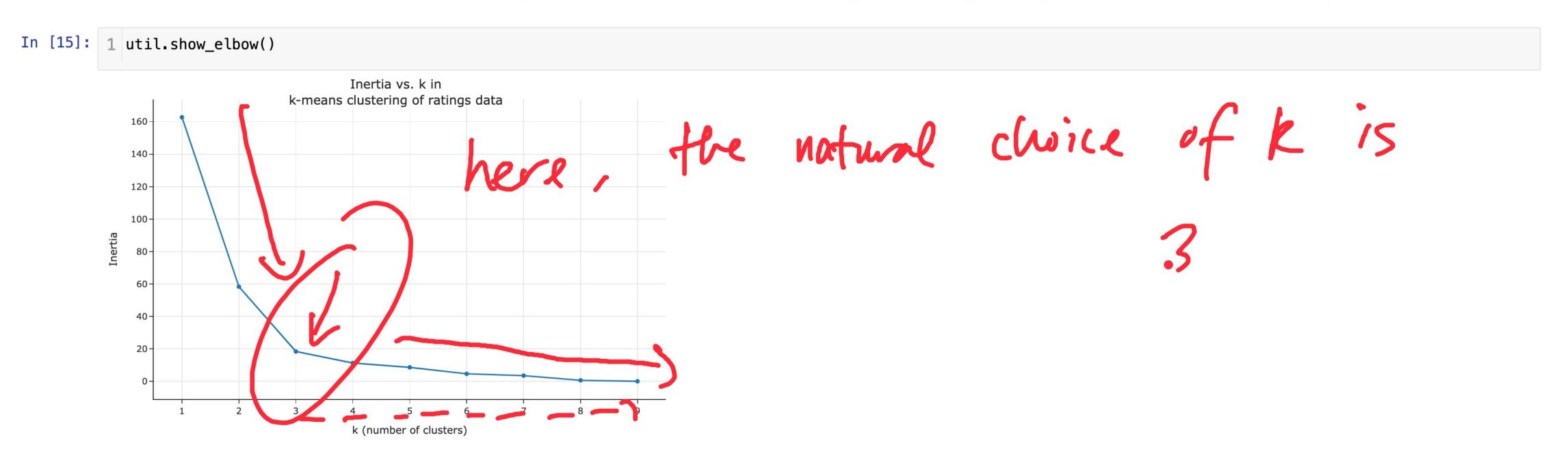
K-Means Algorithm





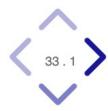
The elbow method

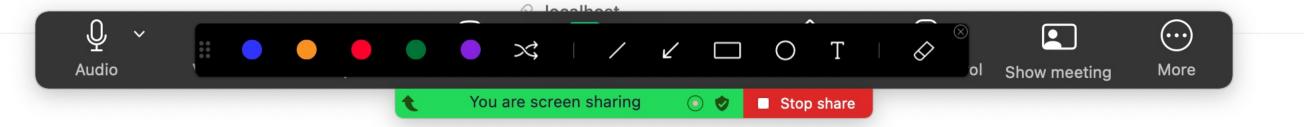
ullet For several different values of k, let's compute the inertia of the resulting clustering, using the scatter plot from the previous slide.



• The **elbow method** says to choose the k that appears at the elbow of the plot of inertia vs. k, since there are diminishing returns for using more than k clusters.

Above, we see an elbow at k = 3, which gives us the k that matches our natural intuition in this example.





Talking: Suraj Jaideep Rampure

In [27]: 1 util.color_ratings(title='Iteration 4', show_distances=[(0, 2), (1, 2)], labels=[0, 1, 2, 2, 5, 5, 5, 7, 7])

