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e Another approach we could try IS 1O:
= Place 'Glucose’ valuesinto bins, e.g. 50 to 55, 55 to 60, 60 to 65, etc.

= Within each bin, compute the proportion of patients in the training set who had

diabetes.

In [6]: 1 # Take a look at the source code in lec22 util.py to see how we did this!
. # We've hidden a lot of the plotting code in the notebook to make it cleaner.

3 util.make_prop_plot(X_train, y_train)

Proportion of Individuals with Diabetes
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e Below, we'll look at the shape of y = O'(Ibf) + w1 x) for different values of wy and w;.
NS~ ) S

= Wy controls the position of the curve on the x-axis.
= w1 controls the "steepness” of the curve. J -

In [7]: 1 util.show_three_sigmoids()

wlo=0,wl=1 wOo=15,wl =5
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Logistic regression

e Logistic regression is a linear classification technique that builds upon linear regression.

It is not called logistical regression!

e |t models the probability of belonging to class 1, given a feature vector:
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Logistic regression

e Logistic regression is a linear classification technique that builds upon linear regression.

It is not called logistical regression!

e |t models the probability of belonging to class 1, given a feature vector:

-+ wlxgl) -+ w2x§2)+. ; 3 +__u_del(.d)) =0 (LB . Aug(f,-))

_—
linear regression model f ar A€ +U ¢




localhost

® B Zc B8 O T %

In [9]: 1 from sklearn.linear_model import LogisticRegression

e Let'sfita LogisticRegression classifier. Specifically, this means we're asking sklearn to learn
the optimal parameters wj and wy in:

P(y; = 1|Glucose;) = o (wg + wq - Glucose;)

In [11]: 1 model_logistic = LogisticRegression()
2 model_logistic.fit(X_train[['Glucose']l], y_train)
P — I
OQut[11]:

v LogisticRegression

LogisticRegression()

"f-],,k:»\;f:gx‘ 49!J°::EE;~
o We get a test accuracy that's roughly in line with the test accuracies of the two models we saw last

757 fest Ay

class.

In [12]: 1 model_logistigZscore(X_test[['Glucose']], y_test)

Out[12]: @.75

51 )
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Attempting to use squared loss

o QOur default loss function has always been squared loss, so we could try and use it here.

- ] = -
Ru(@) =~ Y (y — o (& - Aug(F)))"

flr \/\N\/v
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S >3 e = B2 €F T
Ry (W, wy) = — Z, yi—o(wy+w; x; )
n =1 ey’
4= Glucose;
In [18]: 1 util.show_logistic_mse_surface(X_train, y_train)

Mean Squared Error Loss Surface
for Logistic Regression
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e Suppose y; = 1.Then, !H grapH ! !Hesur! |ss of the prediction p; is below.

In [19]: 1 util.show_squared_loss_individual()

Squared loss is bounded to (0, 1) when predicting probabilities!
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predicted probability, then:

_ ) —log(pi) it y; =
Lee(yispi) = { _lop(l —p) iy =

e Note that inthe two cases - y; = 1 and y; = 0 - the cross-entropy loss function resembles square
loss, but is unbounded when the predicted probabilities p; are far from y;.

In [20]: 1 util.show _ce loss_individual 1()




predicted probability, then:

In [20]:

4
Lce(yiapi) —

1 util.show _ce_loss_individual _1()
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Lce is» Vi) — o e ; |
- 1) —log(l —pi)” ify; =0

In [21]: 1 util.show_ce_loss_individual 0(
Cross Entropy Loss \
7
&L
| | cnal  * f
: Moy Mag

iﬁ &4 eoch dtres -
(
(

I 1 | | |
0 0.2 0.4 0.6 0.8 1

—log(1l — p;)




localhost

A non-piecewise definition of cross-entropy loss

e We can define the cross-entropy loss function piecewise. If y; is an observed value and p; is a predicted
probability, then:

_ [ —loglp)  ify =1
Lce(yzapz) - { —log(l _pi) 1f y;i = 0

e An equivalent formulation of L. that isn't piecewise is:
, —
Lee(yi, pi) = — (yilog p; + (1 —; (1 —pi))

i izl
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A non-piecewise definition of cross-entropy loss

e We can define the cross-entropy loss function piecewise. If y; is an observed value and p; is a predicted
probability, then:

_ [ —loglp)  ify =1
Lce(yzapl) — { _log(l —pl) 1f Y = 0

e An equivalent formulation of L. that isn't piecewise is:

Lee(yis pi) = —\);@+ (I = y;)log(l = p;))
';F Y;=0 :




X

Le.(yi,pi) =—(ylogp, + (1 —y;)log(l — p;))

— (4 Tog oA (7)) +(H) - - .
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P(y; = 1|x;) = o(wy + wlxl(.l) + w2x§2)+. ; & +wdx(d)) =0 (LZJ> . Aug(f,-))

I

2.Choose a loss function. o’ c—@ M'{"yb Vé (OQ.C
Lee(yi, pi) = — (y; log p; + (1 — ;) log(1l — p;))

where p. = P(y =1|x;) =0 (u_3 . Allg(fi))

3. Minimize average loss to find optimal model parameters.

As we've now seen, average loss could also be regularized!

3 1 -«
R..(w) = —— Z,()’i logp; + (1 — y;)log(1 — p;))
T gy

1 k — - e v
=—— ) [vilog(c (@ - Aug(x))) + (1 - y))log(1 - o (i - Aug(%)))]
=1

The actual minimization here is done using numerical methods, through sklearn.




¢ LogisticRegression in sk
e The LogisticRegression classin sklearn has alot of hidden, default hyperparameters.

I In [24]: 1 LogisticRegression?

e It performs L, regularization ("ridge logistic regression") by default. The hyperparameter for regularization strength,
C,is the inverse of A; by default, it sets C = 1.

e So, for a given value of C, it minimizes:

Rce-reg(@_ % Z [yi log(a (Ll_} ) Aug(fz))) + (1 o yi)log(l —0 (l’B ' Aug(x ) + ~ Z w
averge CC [os¢ by delak,
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[29]: 1 util.show_one_feature_plot _with _logistic_and_x_threshold(X_train, y _train, 0.5
J
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e How do we find the exact x-axis position of the decision bounc
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probabilities are of the form:

= )
P(yi — 1|Glucosei) =0 (w("; + wT . Glucose,-) f [f [K)

e Suppose we fix a threshold, T". Then, our decision boundary is of the form:

O'"ICaf(w;‘; + w} - GlucoseT)>< T )
" o

e If we caninvert o(?),thenw

threshold:

wo“(;_w"" ‘ @\\v‘co?e.r O—(ICT>

an re-arrange the above to solve for the 'Glucose' value at the

Glucosetr =
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X

probabilities are of the form:

P(y; = 1|Glucose;) = o (w("; + wry - Glucose,-)

e Suppose we fix a threshold, T". Then, our decision boundary is of the form:

o (wg + w* - Glucoser) =T

e If we can invert o(¢), then we can re-arrange the above to solve for "Gluco e' value at the
threshold: [ oj
Glucosetr = *
W

e Important: If p = o(¢),then 6~ (p) = log(ﬁ) is the inverse of o(%).

o~ ! (p) is called the logit function.

2 5.1 )




e SUPpPOse an event occurs wi wpvicre

e The odds of that event are:

odds(p) = 4

1—-p

3

* Forinstance, if there'sap = -

chance that Michigan wins this week, then the odds that Michigan wins
this week are:

o |nterpretation: it's 3 times more likely that Michigan wins than loses.

,07 A?.—- q‘
. 1 (\’ D
e We caninterpretoc™ (p) = log( 1 ) as the "log odds" of p!

See the reference slides for more details.

w1 )
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3|T = 0.5
4 glucose_threshold = (np.log(T / (1 = T)) - w@_star) / wl_star
5 glucose_threshold

Out[30]: 140.0083983057046 /\

In [31]: 1 util.show_one_feature plot with logistic_and_x_threshold(X_train, y_train, 0.5)
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e Now, as we did last class, let's use both 'Glucose' and 'BMI' to predict diabetes.

In [33]: 1 util.create_base_scatter(X_train, y_train)

Relationship between Glucose, BMI, and Diabetes

10z Outcome
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P(y; = 1|Glucose;, BML)= ¢ (—7.85 + 0.04 - Glucose; + 0.08 - BMI,)

 The graph below shows the predicted probabilities of CIZ dlabetes) for different combinations of features.

In [36]: 1 util.show_logistic(model_logistic_multiple, X_train, y_train)

Predicted Probability of Diabetes Given Glucose and BMI




