

What does the derivative of a function tell us?

- Goal: Given a differentiable function f(w), find the input w^* that minimizes f(w).
- What does $\frac{d}{dw} f(w)$ mean?

Gradient descent

- To minimize a **differentiable** function f:
 - 1. Pick a positive number, α . This number is called the **learning rate**, or **step size**.

Think of α as a hyperparameter of the minimization process.

- 2. Pick an **initial guess**, $w^{(0)}$.
- 3. Then, repeatedly update your guess using the update rule:

wess using the update rule:

$$w^{(t+1)} = w^{(t)} - \alpha \frac{df}{dw}(w^{(t)})$$

$$step : denivative$$

$$sf = \int_{0}^{\infty} w^{(t+1)} dt dt$$

- Repeat this process until **convergence** that is, when the difference between $w^{(t)}$ and $w^{(t+1)}$ is small.
- This procedure is called gradient descent.

What if we use a different learning rate?

@ localhost

/ / D O T | & "

- When is gradient descent guaranteed to converge to a global minimum? What kinds of functions work well with gradient descent?
- How do we choose a step size?
- How do we use gradient descent to minimize functions of multiple variables, e.g.:

$$R_{\text{ridge}}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2 + \lambda \sum_{j=1}^{d} w_j^2$$

This is a function of d+1 variables: w_0, w_1, \ldots, w_d .

• Question: Why can't we use gradient descent to find $\vec{w}_{\mathrm{LASSO}}^*$?

$$R_{\text{LASSO}}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2 + \lambda \sum_{j=1}^{d} |w_d|$$

sur jondescent value forcoison is forentiable différentiable

/ / D O T | & "

What makes a function convex?

A non-convex function X.

Intuitive definition of convexity

A **convex** function **3**.

A non-convex function X.

• A function f is **convex** if, for **every** a, b in the domain of f, the line segment between:

(a, f(a)) and (b, f(b))

does not go below the plot of f.

Second derivative test for convexity

• If f(w) is a function of a single variable and is twice differentiable, then f(w) is convex if and only if:

$$\frac{d^2f}{dw^2}(w) \ge 0, \quad \forall \ w$$

• Example:
$$f(w) = w^4$$
 is convex.

$$\int_{0}^{\infty} = w^{4} \text{ is convex.}$$

$$\int_{0}^{\infty} = u^{4} \text{ is convex.}$$

Why does convexity matter?

- Convex functions are (relatively) easy to minimize with gradient descent.
- **Theorem**: If f(w) is convex and differentiable, then gradient descent converges to a **global minimum** of f, as long as the step size is small enough.

Why?

- Gradient descent converges when the derivative is 0.
- For convex functions, the derivative is 0 only at one place the global minimum.
- In other words, if f is convex, gradient desception on the stuck and terminate in places that aren't global

minimums (local minimums, saddle points, etc.).

$$\frac{\partial f}{\partial w_{1}} = 3 \cdot \cos(2w_{1}) \cdot 2 \cdot \cos(2w_{2}) + 2w_{1}$$

$$= 6 \cos(2w_{1}) \cos(2w_{2}) + 2w_{1}$$

Minimizing functions of multiple variables

Consider the function:

$$f(w_1, w_2) = 3\sin(2w_1)\cos(2w_2) + w_1^2 + w_2^2$$

• It has two partial derivatives: $\frac{\partial f}{\partial w_1}$ and $\frac{\partial f}{\partial w_2}$. See the annotated slides for what they are and how we find them.

$$f(\vec{w}) = f(w_1, w_2) = 3\sin(2w_1)\cos(2w_2) + w_1^2 + w_2^2$$

/ / D O T | Ø

$$\nabla f(\vec{w}) = \begin{bmatrix} 6\cos(2w_1)\cos(2w_2) + 2w_1 \\ -6\sin(2w_1)\sin(2w_2) + 2w_2 \end{bmatrix}$$

Gradient descent for functions of multiple variables

Example:

$$f(\vec{w}) = f(w_1, w_2) = 3\sin(2w_1)\cos(2w_2) + w_1^2 + w_2^2$$

$$\nabla f(\vec{w}) = \begin{bmatrix} 6\cos(2w_1)\cos(2w_2) + 2w_1 \\ -6\sin(2w_1)\sin(2w_2) + 2w_2 \end{bmatrix}$$

• The global minimizer* of
$$f$$
 is a vector, $\vec{w}^* = \begin{bmatrix} w_1^* \\ w_2^* \end{bmatrix}$. *If one exists.

ullet We start with an initial guess, $ec{w}^{(0)}$, and step size lpha , and update our guesses using:

$$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \alpha \nabla f(\vec{w}^{(t)})$$

apdate rule.

Example: Gradient descent for simple linear regression

• To find optimal model parameters for the model $H(x_i) = w_0 + w_1 x_i$ and squared loss, we minimized empirical risk:

$$R_{\text{sq}}(w_0, w_1) = R_{\text{sq}}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

• This is a function of multiple variables, and is differentiable, so it has a gradient!

$$\nabla R(\vec{w}) = \begin{bmatrix} -\frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) \\ -\frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i \end{bmatrix}$$

- **Key idea**: To find $\vec{w}^* = \begin{bmatrix} w_0^* \\ w_1^* \end{bmatrix}$, we could use gradient descent!
- Why would we, when closed-form solutions exist?

