

• Last class, we used k-fold cross-validation to choose between the following five models that predict commute time in 'minutes'.

Ridge regression

 Idea: In addition to just minimizing mean squared error, what if we could also try and prevent large parameter values?

O localhost

Maybe this would lead to less overfitting!

new objective function

∠ □ O T

• Regularization is the act of adding a penalty on the norm of the parameter vector, \vec{w} , to the objective function.

$$R_{\text{ridge}}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2 + \lambda \sum_{j=1}^{d} \vec{w_j^2}$$
regularization

• Linear regression with L₂ regularization – as shown above – is called **ridge regression**.

You'll explore the reason why in Homework!

penalty

Louit regularizel intercept

Activity

The objective function we minimize to find $\vec{w}_{\mathrm{ridge}}^*$ in **ridge regression** is:

$$R_{\text{ridge}}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2 + \lambda \sum_{j=1}^{d} w_j^2$$

 λ is a **hyperparameter**, which we choose through cross-validation. Discuss the following points with those • What if we pick $\lambda=0$ – what is $\vec{w}_{\mathrm{ridge}}^*$ then? Wridge • What happens to $\vec{w}_{\mathrm{ridge}}^*$ as $\lambda\to\infty$? • Can λ be negative? near you:

Activity

The objective function we minimize to find $\vec{w}_{\mathrm{ridge}}^*$ in **ridge regression** is:

$$R_{\text{ridge}}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2 + \lambda \sum_{i=1}^{d} w_i^2$$

 λ is a **hyperparameter**, which we choose through cross-validation. Discuss the following points with those near you:

- Can λ be negative?

• What if we pick $\lambda=0$ - what is $\vec{w}_{\mathrm{ridge}}^*$ then?
• What happens to $\vec{w}_{\mathrm{ridge}}^*$ as $\lambda\to\infty$? Wridge ω :

minimize
$$\frac{1}{n} \|\vec{y} - X\vec{w}\|^2$$
 such that $\sum_{j=1}^d w_j^2 \le Q$; $\lambda \approx \frac{1}{Q}$

@ localhost

- Intuitively:
 - The contour plot of the loss surface for just the mean squared error component is in viridis.
 - The constraint, $\sum_{j=1}^{d} w_j^2 \leq Q$, is in red. Ridge regression says, minimize mean squared error, while staying in the red circle. The larger Q is, the larger the radius of the circle is.

Taking a step back

- $m{\dot{w}}_{ ext{ridge}}^*$ doesn't minimize mean squared error it minimizes a slightly different objective function.
- So, why would we use ever use ridge regression?

hopefully prevents overfitting.

/ / D O T | &

What do the resulting predictions look like?

• The L_2 norm, or Euclidean norm, of a vector $\vec{v} \in \mathbb{R}^n$ is defined as:

$$\|\vec{v}\| = \|\vec{v}\|_2 = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} = \left(v_1^2 + v_2^2 + \dots + v_n^2\right)^{\frac{1}{2}}$$

The L_2 norm is the default norm, which is why the subscript 2 is often omitted.

• The L_p norm of \vec{v} , for $p \geq 1$, is:

$$\|\vec{v}\|_p = \left(|v_1|^p + |v_2|^p + \dots + |v_n|^p\right)^{\frac{1}{p}}$$

$$\|\vec{v}\| = \|\vec{v}\|_{2}^{2} = \sqrt{v_{1}^{2} + v_{2}^{2} + \dots + v_{n}^{2}} = (v_{1}^{2} + v_{2}^{2} + \dots + v_{n}^{2})^{\frac{1}{2}}$$

The L_2 norm is the default norm, which is why the subscript 2 is often omitted.

• The L_p norm of \vec{v} , for $p \geq 1$, is:

$$\|\vec{v}\|_p = (|v_1|^p + |v_2|^p + \dots + |v_n|^p)^{\frac{1}{p}}$$

• Ridge regression is said to use L_2 regularization because it penalizes the (squared) L_2 norm of \vec{w} , ignoring the intercept term:

$$R_{\text{ridge}}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2 + \lambda \sum_{j=1}^{d} w_j^2$$

ullet LASSO is said to use L_1 regularization because it penalizes the L_1 norm of ec w, ignoring the intercept term:

$$R_{\text{LASSO}}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2 + \lambda \sum_{j=1}^{a} |w_j|$$

/ / O T | Ø

Let's use LASSO to fit a degree 25 polynomial to Sample 1.

Here, we'll **fix** the degree, and cross-validate to find λ .

```
In [34]:
         1 hyperparams = {
               'lasso__alpha': 10.0 ** np.arange(-2, 15)
         4 model_regularized_lasso = GridSearchCV(
               estimator=make_pipeline(PolynomialFeatures(25, include_bias=False), Lasso())
               param_grid=hyperparams,
               scoring='neg_mean_squared_error'
         9 model_regularized_lasso.fit(X_train, y_train)
Out[34]:
                   GridSearchCV
             best_estimator_: Pipeline
              PolynomialFeatures
                     ▶ Lasso
```


Ų

- As before:
 - The contour plot of the loss surface for just the mean squared error component is in viridis.
 - The constraint, $\sum_{j=1}^{d} |w_j| \leq Q$, is in red. LASSO says, minimize mean squared error, while staying in the red diamond. The larger Q is, the larger the side length of the diamond is.

∠ □ O T | ⊗

ols ridge lasso

feature

intercept	460.31	214.15	2.54e+02
polynomialfeaturesdeparture_hour	-94.79	-0.71	-2.10e+01
polynomialfeaturesdeparture_hour^2	6.80	-4.63	-1.70e+00
polynomialfeaturesdeparture_hour^3	-0.14	0.31	1.81e-01
onehotencoderday_Mon	-0.61	-5.74	-2.70e+00
onehotencoderday_Thu	13.30	6.04	9.00e+00
onehotencoderday_Tue	11.19	5.52	8.68e+00
onehotencoderday_Wed	5.73	-0.46	0.00e+00
onehotencodermonth_December	8.90	2.82	4.06e+00
onehotencodermonth_February	-5.33	-7.14	-5.81e+00
onehotencodermonth_January	1.93	0.39	0.00e+00
onehotencodermonth_July	2.46	0.44	0.00e+00
onehotencodermonth_June	6.28	4.45	5.14e+00
onehotencodermonth_March	-0.76	-1.70	-8.17e-01
onehotencodermonth_May	9.36	4.95	5.57e+00
onehotencodermonth_November	1.40	-1.81	-0.00e+00
onehotencodermonth_October	2.06	0.22	0.000100
onehotencodermonth_September	-3.20	0.05	-0.00e+00
pipelineday_of_month_Week 2	0.91	1.39	3.23e-01
pipelineday_of_month_Week 3	6.30	4.70	4.57e+00
pipelineday_of_month_Week 4	0.28	-0.20	-0.00e+00
pipelineday_of_month_Week 5	2.09	0.76	4.78e-03

lots of 0s!