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Recap: Simple linear regression
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Last lecture, we said that the line in red is the regression line.

But how did we find this line? 4



Goal: Use the modeling recipe to find the "best" simple linear hypothesis function.

            1. Model: .

            2. Loss function: .

            3. Minimize empirical risk: .

The resulting line, , is the unique line that minimizes MSE.
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Before we go any further, let's test out our formulas in code.

The supplementary notebook is posted in the usual place on GitHub and the course
website.

Here's another related demo on another website. 6

https://github.com/practicaldsc/wn25/tree/main/lectures/lec14/
https://practicaldsc.org/resources/lectures/lec14/lec14-filled.html
https://practicaldsc.org/resources/lectures/lec14/lec14-filled.html
https://dsc40a.com/demos/1_linear_regression


Interpreting the formulas
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Can we conclude that leaving later causes you to get to school earlier?
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The units of the slope are units of  per units of .

In our commute times example, in , our predicted
commute time decreases by 8.19 minutes per hour.
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Since  and , the slope's sign is 's sign.

As the  values get more spread out,  increases, so the slope gets steeper.

As the  values get more spread out,  increases, so the slope gets shallower.
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What are the units of the

intercept?

What is the value of
?
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Answer at practicaldsc.org/q

We fit a regression line to predict commute times given departure hour. Then, we add 75

minutes to all commute times in our dataset. What happens to the resulting regression
line?

A. Slope increases, intercept increases.

B. Slope decreases, intercept increases.

C. Slope stays the same, intercept increases.

D. Slope stays the same, intercept stays the same.
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Regression and linear algebra
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Soon, we'll want to make predictions using more than one feature.
Example: Predicting commute times using departure hour and the day of the

month.

Thinking about linear regression in terms of matrices and vectors will allow us to find

hypothesis functions that:
Use multiple features (input variables).

Are non-linear in the features, e.g. .

14



Model: .

Loss function: .

To find  and , we minimized

empirical risk, i.e. average loss:

Observation: kind
of looks like the formula for the

norm of a vector,

.
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Let's define a few new terms:

The observation vector is the vector . This is the vector of observed "actual

values".

The hypothesis vector is the vector  with components . This is the

vector of predicted values.

The error vector is the vector  with components:
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Consider .
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Let's define a few new terms:

The observation vector is the vector . This is the vector of observed "actual

values".

The hypothesis vector is the vector  with components . This is the

vector of predicted values.

The error vector is the vector  with components:

Key idea: We can rewrite the mean squared error of  as:
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The hypothesis vector is the vector  with components . This is the

vector of predicted values.

For the linear hypothesis function , the hypothesis vector can be

written:
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Define the design matrix  as:

Define the parameter vector  to be .

Then, , so the mean squared error becomes:
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To find the optimal model parameters for simple linear regression,  and , we
previously minimized:

Now that we've reframed the simple linear regression problem in terms of linear

algebra, we can find  and  by finding the  that minimizes:

Do we already know the  that minimizes ?
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 and  are fixed: they come from our data.

Our goal is to pick the  that minimizes:

This is equivalent to picking the  that minimizes:

This is equivalent to finding the  and  so that  is as "close" to  as possible.

Solution: Find the orthogonal projection of  onto !

We already did this in Linear Algebra Guide 4, which you're reviewing in
Homework 6, Question 6!
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https://practicaldsc.org/guides/linear-algebra/projections/
https://practicaldsc.org/guides/linear-algebra/projections/
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The optimal parameter vector, , is the one that minimizes:

In LARDS Section 8 (and your linear algebra class), we showed that the  that

minimizes the length of the error vector, , is the one that satisifes
the normal equations:

The minimizer of  is the same as the minimizer of .

Key idea: The  that solves the normal equations also minimizes !
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The normal equations are the system of 2 equations and 2 unknowns defined by:

Why are they called the normal equations?

If  is invertible, there is a unique solution to the normal equations:

If  is not invertible, then there are infinitely many solutions to the normal

equations. We will explore this idea as the semester progresses.
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To find the optimal model parameters for simple linear regression,  and , we
previously minimized .

We found, using calculus, that:

.

.

Another way of finding optimal model parameters for simple linear regression is to find

the  that minimizes .

The minimizer, if  is invertible, is the vector .

These formulas are equivalent! 27



To give us a break from math, we'll switch to a notebook, showing that both formulas –
that is, (1) the formulas for  and  we found using calculus, and (2) the formula for

 we found using linear algebra – give the same results.

You'll prove this in Homework 7 .

We'll use the same supplementary notebook as earlier, posted in the usual place on
GitHub and the course website.

Then, we'll use our new linear algebraic formulation of regression to incorporate
multiple features in our prediction process.
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https://github.com/practicaldsc/wn25/tree/main/lectures/lec14/
https://practicaldsc.org/resources/lectures/lec14/lec14-filled.html


Define the design matrix , observation vector , and parameter
vector  as:

How do we make the hypothesis vector, , as close to  as possible? Use the

solution to the normal equations, :

We chose  so that  is the projection of  onto the span of the

columns of the design matrix, . 29



Multiple linear regression
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So far, we've fit simple linear regression models, which use only one feature
( 'departure_hour' ) for making predictions.
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In the context of the commute times dataset, the simple linear regression model we fit
was of the form:

Now, we'll try and fit a linear regression model of the form:

Linear regression with multiple features is called multiple linear regression.

How do we find , , and ?
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The hypothesis function:

looks like a line in 2D.

Questions:

How many dimensions do we need to graph the hypothesis function:

What is the shape of the hypothesis function?
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Our new hypothesis function is a plane in 3D!
Our goal is to find the plane of best fit that pierces through the cloud of points.
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When our hypothesis function is of the form:

the hypothesis vector  can be written as:
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To find the optimal parameter vector, , we can use the design matrix
and observation vector :

Then, all we need to do is solve the normal equations once again:

If  is invertible, we know the solution is:
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Let's switch back to the notebook and use what we've just learned to find the , ,
and  that minimize mean squared error for the following hypothesis function:

We'll use the same supplementary notebook as earlier, posted in the usual place on

GitHub and the course website.

Next class, we'll present a more general formulation of multiple linear regression and

see how it can be used to incorporate (many) more sophisticated features.

Then, we'll start discussing the nature of how we choose which features to use, and

why more isn't always better.
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