Lecture 14

Regression using Linear Algebra

EECS 398: Practical Data Science, Winter 2025

practicaldsc.org « github.com/practicaldsc/wn25 - ¥ See latest announcements here on Ed


https://practicaldsc.org/
https://github.com/practicaldsc/wn25
https://edstem.org/us/courses/69737/discussion/5943734

Agenda

e Recap: Simple linear regression.
e |nterpreting the formulas.
e Regression and linear algebra.

o Multiple linear regression.



Recap: Simple linear regres




Minutes

Predicted Commute Time = 142.25 - 8.19 * Departure Hour
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Last lecture, we said that the line in red is the regression line.
But how did we find this line?



Recap: Simple linear regression
o Goal: Use the modeling recipe to find the "best" simple linear hypothesis function.

1.Model: H(z;) = wg + wix;.
2. Loss function: Ly, (y;, H(z;)) = (y; — H(z;))?.
1 n
3. Minimize empirical risk: Ry (wo, w1) = — Y (yi — (wo + w1x;))”.
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e The resulting line, H*(x;) = w{ + wiz;, is the unique line that minimizes MSE.



Code demo

o Before we go any further, let's test out our formulas in code.
Predicted Commute Time = 142.25 - 8.19 * Departure Hour
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e The supplementary notebook is posted in the usual place on GitHub and the course
website.

e Here's another related demo on another website.


https://github.com/practicaldsc/wn25/tree/main/lectures/lec14/
https://practicaldsc.org/resources/lectures/lec14/lec14-filled.html
https://practicaldsc.org/resources/lectures/lec14/lec14-filled.html
https://dsc40a.com/demos/1_linear_regression

Interpreting the formulas




Causality

o Can we conclude that leaving later causes you to get to school earlier?
Predicted Commute Time = 142.25 - 8.19 * Departure Hour
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Interpreting the slope

w; =r—
O

e The units of the slope are units of y per units of x.

e In our commute times example, in H *(xz;) = 142.25 — 8.19x;, our predicted
commute time decreases by 8.19 minutes per hour.



Interpreting the slope
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e Since o, > 0and oy, > 0, the slope's signis 7's sign.
 Asthe y values get more spread out, o, increases, so the slope gets steeper.

o Asthe x values get more spread out, o, increases, so the slope gets shallower.



Interpreting the intercept

Predicted Commute Time = 142.25 - 8.19 * Departure Hour
e What are the units of the

140

intercept?
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e \What is the value of
H*(z)?
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DK

Question =

Answer at practicaldsc.org/q

We fit a regression line to predict commute times given departure hour. Then, we add 75
minutes to all commute times in our dataset. What happens to the resulting regression
line?

e A.Slope increases, intercept increases.

e B. Slope decreases, intercept increases.

e C. Slope stays the same, intercept increases.

e D.Slope stays the same, intercept stays the same.
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https://practicaldsc.org/q

Regression and linear algeb




Wait... why do we need linear algebra?

e Soon, we'll want to make predictions using more than one feature.
o Example: Predicting commute times using departure hour and the day of the
month.

e Thinking about linear regression in terms of matrices and vectors will allow us to find
hypothesis functions that:

o Use multiple features (input variables).

2

o Are non-linear in the features, e.g. H(x;) = wo + wiz; + wazs;.
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Simple linear regression, revisited

Minutes
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e Model: H(x;) = wg + wyx;.

Predicted Commute Time = 142.25 - 8.19 * Departure Hour .
e Loss function: (y; — H(z;))>.
® . e e .
e To find wy and w7, we minimized
. empirical risk, i.e. average loss:
¢ n
1 Z 2
i=1

e Observation: R, (wg, w1) kind

6 7 8 0 10 11 of looks like the formula for the

Home Departure Time (AM)

norm of a vector,

19]] = 4/v? +vi+...+ 02
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Regression and linear algebra

Let's define a few new terms:

e The observation vector is the vector . This is the vector of observed "actual
values”.

« The hypothesis vector is the vector i € R™ with components H(x;).Thisis the
vector of predicted values.

e The error vector is the vector € € R™ with components:
€; — — H(CBZ)
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Example

Consider H(z;) = 2 + ;.
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Regression and linear algebra

Let's define a few new terms:

e The observation vector is the vector . This is the vector of observed "actual
values”.

The hypothesis vector is the vector 1, € R™ with components H(x;).Thisis the
vector of predicted values.

e The error vector is the vector € € R™ with components:
€; — — H(CBZ)

Key idea: We can rewrite the mean squared error of H as:

Ra(H) = =3 (1. — H@))* = ~ &2 = i~ |

n
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The hypothesis vector

« The hypothesis vector is the vector h € R™ with components H (z;). This is the
vector of predicted values.

e For the linear hypothesis function H () = w + w1 x, the hypothesis vector can be
written:

Wy + wiT1

Wy -+ W19
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Rewriting the mean squared error

o Define the design matrix X € R"*? as:

o Define the parameter vector w € R? to be w = [

1
1

1

Wy

w1

e Then, h = Xw, so the mean squared error becomes:

Rsq(H)

1 .
—|ly—h|* =
n

|

Ry

—

w

)

1

—lly =X
n

—

w

I*

20



Minimizing mean squared error, again

e To find the optimal model parameters for simple linear regression, w{'} and wi, we
previously minimized:

Ry (wo, w1) = - zn:( — (wo +wiz;))”

n 1=1

e Now that we've reframed the simple linear regression problem in terms of linear
%

Wy

algebra, we can find w(, and w} by finding the w* = [ )
Wy

] that minimizes:

S 1 S
Rea(®) = — |17 — X

o Do we already know the w* that minimizes Rsq(w)?



Minimizing mean squared error, using projections?

X and 1 are fixed: they come from our data.

Our goal is to pick the w™* that minimizes:
— ]- —
Ry () = — ||y — Xw||’
n
This is equivalent to picking the w* that minimizes:
| — Xw||?

This is equivalent to finding the w{ and w7} so that Xw™ is as "close" to v as possible.
Solution: Find the orthogonal projection of ¢/ onto span(X)!

We already did this in Linear Algebra Guide 4, which you're reviewing in
Homework 6, Question 6!
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https://practicaldsc.org/guides/linear-algebra/projections/
https://practicaldsc.org/guides/linear-algebra/projections/
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An optimization problem we've seen before

e The optimal parameter vector, w* = [wg w’{]T, is the one that minimizes:
— ]- —
Ruy(@) = — || - X

e In LARDS Section 8 (and your linear algebra class), we showed that the w™* that
e|| = ||y — Xwl|, is the one that satisifes

minimizes the length of the error vector,
the normal equations:

X' Xw* = X"
e The minimizer of ||€|| is the same as the minimizer of Ry, (w).
1, 1 .
—|lell* = — ||y — Xw||*
n n

o Key idea: The w™* that solves the normal equations also minimizes R, (w)!
! 25



The normal equations

e The normal equations are the system of 2 equations and 2 unknowns defined by:

X' xw* = x71

o Why are they called the normal equations?
o If X X isinvertible, there is a unique solution to the normal equations:
0 — (XTX)—lXT
o If X1 X is not invertible, then there are infinitely many solutions to the normal
equations. We will explore this idea as the semester progresses.

26



The optimal parameter vector, w*

e To find the optimal model parameters for simple linear regression, "w(’; and wi, we

previously minimized Rsq(wo, w1) = = Y i (v — (wo + wiz;))%

o We found, using calculus, that:

« Z?zl (w’& - E)(yz — g) Oy
u wl — = Tr—_1.

Z?zl(l’i —z)? Oz

" lwy =Y — wiT|

e Another way of finding optimal model parameters for simple linear regression is to find

the W* that minimizes Ryq (W) = = ||y — Xw||%

o The minimizer, if X7 X is invertible, is the vector |w* = (X X))t X7’

e These formulas are equivalent!



Code demo

e To give us a break from math, we'll switch to a notebook, showing that both formulas —
that is, (1) the formulas for w7 and w; we found using calculus, and (2) the formula for
w* we found using linear algebra — give the same results.

o You'll prove thisin Homework 7 ‘<.

o We'll use the same supplementary notebook as earlier, posted in the usual place on
GitHub and the course website.

e Then, we'll use our new linear algebraic formulation of regression to incorporate
multiple features in our prediction process.

28


https://github.com/practicaldsc/wn25/tree/main/lectures/lec14/
https://practicaldsc.org/resources/lectures/lec14/lec14-filled.html

Summary: Regression and linear algebra

o Define the design matrix X ¢ R"*?, observation vector , and parameter
vector w € R? as:

1 L1
o = [
X =1 . w =
S w1
1 z,

e How do we make the hypothesis vector, h = Xw, as close to 7 as possible? Use the
solution to the normal equations, w™:

,&}* _ (XTX)—IXT

e We chose w* sothat h* = Xw™ is the projection of 7 onto the span of the
columns of the design matrix, .X.



Multiple linear regression




departure_hour day of month minutes

0 10.816667 15 68.0
1 7.750000 16 94.0
2 8.450000 22 63.0
3 7.133333 23 100.0
4 9.150000 30 69.0

So far, we've fit simple linear regression models, which use only one feature
( 'departure_hour' ) for making predictions.
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Incorporating multiple features

In the context of the commute times dataset, the simple linear regression model we fit
was of the form:

pred. commute = H(departure hour,)
= wq + w; - departure hour,

Now, we'll try and fit a linear regression model of the form:

pred. commute = H(departure hour,, day of month,)
= wqo + w; - departure hour, + w; - day of month,

e Linear regression with multiple features is called multiple linear regression.

e How do we find wy, w7, and w5?
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Geometric interpretation

e The hypothesis function:

H (departure hour;) = wy + w; - departure hour,
looks like a line in 2D.
e Questions:

o How many dimensions do we need to graph the hypothesis function:

H(departure hour,, day of month,) = wg + w; - departure hour; + ws - day of month,

o What is the shape of the hypothesis function?
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Commute Time vs. Departure Hour and Day of Month
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Our new hypothesis function is a plane in 3D!
Our goal is to find the plane of best fit that pierces through the cloud of points.
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The hypothesis vector

e When our hypothesis function is of the form:

H (departure hour;, day of month;) = wy + w; - departure hour; + ws - day of month,

the hypothesis vector h & R™ can be written as:

" H(departure hour, day,) | 1 departure hour; day;| - -
H (departure hour,, day,) 1 departure hour, day,

>
||
||
g

H (departure hour,,day,, ) 1 departure hour,, day,



Finding the optimal parameters

e To find the optimal parameter vector, w*, we can use the design matrix X € R7x3
and observation vector

1 departure hour; day, |
1 departure hour, day,

1 departure hour, day,

e Then, all we need to do is solve the normal equations once again:
X' Xw* = x71

If X1 X is invertible, we know the solution is:

,a*]* _ (XTX)_lXT



Code demo

o Let's switch back to the notebook and use what we've just learned to find the wg, ’w’{,
and w;, that minimize mean squared error for the following hypothesis function:

H (departure hour,, day of month,) = wy + w; - departure hour; + w- - day of month,

o We'll use the same supplementary notebook as earlier, posted in the usual place on
GitHub and the course website.

o Next class, we'll present a more general formulation of multiple linear regression and
see how it can be used to incorporate (many) more sophisticated features.

e Then, we'll start discussing the nature of how we choose which features to use, and
why more isn't always better.
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https://github.com/practicaldsc/wn25/tree/main/lectures/lec14/
https://practicaldsc.org/resources/lectures/lec14/lec14-filled.html

