Lecture 11

Introduction to Machine Learning

EECS 398: Practical Data Science, Winter 2025

practicaldsc.org • github.com/practicaldsc/wn25 • • See latest announcements here on Ed

Agenda 📅

- Machine learning and models.
- The constant model.
- Minimizing mean squared error using calculus.
- Another loss function.

The next few lectures (and Homework 6!) will be primarily **math-based**.

- For these lectures, we'll post blank slides as a PDF before class, and annotated slides after class.
- If there are any code demos, we'll post those before class, too.

Machine learning and models

Machine learning is about automatically learning patterns from data.

without hard-coding

Example: Handwritten digit classification

Humans are good at understanding handwriting, but how do we get computers to understand handwriting?

Example: ChatGPT

How did ChatGPT know how to answer Question 7 from the Fall 2024 Midterm?

You might be starting to look for off-campus apartments for next year, none of which are in your price range.

Time of d measured	lay,	
measured	in	hours

	date	aay	acpartare_noar	iiiiidees	
0	5/22/2023	Mon	8.450000	63.0	
1	9/18/2023	Mon	7.950000	75.0	
2	10/17/2023	Tue	10.466667	59.0	
3	11/28/2023	Tue	8.900000	89.0	
4	2/15/2024	Thu	8.083333	69.0	
			WAS -	+45%	of an hour $\approx 8:26AM$
doc	ida ta liva wit	·h vour	narents in Detroit	t and comm	outo S. Zo Al

day departure hour

You decide to live with your parents in Detroit and commute. You keep track of how long it takes you to get to school each day.

date

Commuting Time vs. Home Departure Time

Commuting Time vs. Home Departure Time

"Occamis razar": simplest explanation is most likely

A model is a set of assumptions about how data were generated.

Possible models

Answer at practicaldsc.org/q

What questions do you have?

The constant model

The constant model

A concrete example

• Let's suppose we have just a smaller dataset of just five historical commute times in minutes.

$$y_1 = 72$$
 $y_2 = 90$
 $y_3 = 61$
 $y_4 = 85$
 $y_5 = 92$

• Given this data, can you come up with a prediction for your future commute time?

Some common approaches

• The **mean**:

$$\frac{1}{5}(72 + 90 + 61 + 85 + 92) = \boxed{80}$$

• The **median**:

- Both of these are familiar **summary statistics**.

 Summary statistics summarize a collection of numbers with a single number, i.e. they result from an **aggregation**.
- But which one is better? Is there a "best" prediction we can make?

The cost of making predictions

- A loss function quantifies how bad a prediction is for a single data point.
 - If our prediction is close to the actual value, we should have low loss.
 - o If our prediction is far from the actual value, we should have high loss.
- A good starting point is error, which is the difference between **actual** and **predicted** values.

$$e_i = y_i - H(x_i)$$

- Suppose my commute actually takes 80 minutes.
 - ∘ If I predict 75 minutes: TV-75=5Mi= ₹0
 - ∘ If I predict 72 minutes: 70 72 = 7
 - ∘ If I predict 100 minutes: 70-100 = -20

-20 < 5, but 100 is a worse prediction:

A concrete example, revisited

Consider again our smaller dataset of just five historical commute times in minutes.

$$y_1 = 72 \rightarrow (72 - 85)^2 = 169$$
 $y_2 = 90 \rightarrow (90 - 85)^2 = 25$
 $y_3 = 61$
 $y_4 = 85$
 $y_5 = 92$
Goal: (one up with a single number that describes how good/bad h=75 is.

• Suppose we predict the median, h=85. What is the squared loss of 85 for each data point?

Averaging squared losses

- We'd like a single number that describes the quality of our predictions across our entire dataset. One way to compute this is as the **average of the squared losses**.
- For the median, h=85:

$$\frac{1}{5} \left((72 - 85)^2 + (90 - 85)^2 + (61 - 85)^2 + (85 - 85)^2 + (92 - 85)^2 \right) = \boxed{163.8}$$

• For the mean, h=80:

$$\frac{1}{5}\big((72-80)^2+(90-80)^2+(61-80)^2+(85-80)^2+(92-80)^2\big)=\boxed{138.8}$$

Which prediction is better? Could there be an even better prediction?

Activity

Answer at practicaldsc.org/q (use the free response box!)

Which h corresponds to the vertex of $R_{\rm sq}(h)$?

The best prediction

$$R_{
m sq}(h)=rac{1}{n}\sum_{i=1}^n(y_i-h)^2$$
 the yis are ant prediction, among all constant predictions h .

- We want the **best** constant prediction, among all constant predictions h.
- The smaller $R_{
 m sq}(h)$ is, the better h is.
- Goal: Find the h that minimizes $R_{
 m sq}(h)$. The resulting h will be called h^* .
- How do we find h^* ?

Minimizing mean squared error using calculus

Minimizing using calculus

• We'd like to minimize:

$$R_{ ext{sq}}(h) = rac{1}{n} \sum_{i=1}^n (y_i - h)^2$$

- In order to minimize $R_{
 m sq}(h)$, we:
 - 1. take its derivative with respect to h_{i}
 - 2. set it equal to 0,
 - 3. solve for the resulting h^* , and
 - 4. perform a second derivative test to ensure we found a minimum.
- ullet $R_{
 m sq}(h)$ is an example of an **objective function**, a function that needs to be minimized.

Step 0: The derivative of $(y_i - h)^2$

Remember from calculus that:

$$\circ$$
 if $c(x)=a(x)+b(x)$, then $\circ rac{d}{dx}c(x)=rac{d}{dx}a(x)+rac{d}{dx}b(x).$

- This is relevant because $R_{ ext{sq}}(h) = rac{1}{n} \sum_{i=1}^n (y_i h)^2$ involves the sum of nindividual terms, each of which involve h.
- So, to take the derivative of $R_{\rm sq}(h)$, we'll first need to find the derivative of $(y_i-h)^2$.

$$\frac{d}{dh}(y_i - h)^2 = 2(y_i - h) \frac{d}{dh}(y_i - h)$$

$$= 2(y_i - h)(-1) = -2(y_i - h)$$

$$= 2(y_i - h)(-1) = -2(y_i - h)$$

$$= 34$$

Question 👺

Answer at practicaldsc.org/q

$$R_{ ext{sq}}(h) = rac{1}{n} \sum_{i=1}^n (y_i - h)^2$$

Which of the following is $\frac{d}{dh}R_{\mathrm{sq}}(h)$?

- A. O
- B. $\sum_{i=1}^n y_i$
- C. $\frac{1}{n}\sum_{i=1}^n (y_i-h)$
- D. $rac{2}{n}\sum_{i=1}^n (y_i-h)$
- E. $-rac{2}{n}\sum_{i=1}^n(y_i-h)$

Step 4: Second derivative test

We already saw that $R_{\rm sq}(h)$ is **convex**, i.e. that it opens upwards, so the h^* we found must be a minimum, not a maximum.

Aside: Terminology

• Another way of writing:

$$h^*$$
 is the value of h that minimizes $\frac{1}{n}\sum_{i=1}^n (y_i-h)^2$

is:

$$h^* = \operatorname*{argmin}_h \left(rac{1}{n} \sum_{i=1}^n (y_i - h)^2
ight)$$

• h^* is the solution to an **optimization problem**, where the objective function is $R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$.

next class ->

The modeling recipe

- We've implicitly introduced a three-step process for finding optimal model parameters (like h^*) that we can use for making predictions:
 - 1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.

 Most modern machine learning methods today, including neural networks, follow this recipe, and we'll see it repeatedly this semester!