Lecture 11

Introduction to Machine Learning

EECS 398: Practical Data Science, Winter 2025

practicaldsc.org - github.com/practicaldsc/wn25 - 8 See latest announcements here on Ed


https://practicaldsc.org/
https://github.com/practicaldsc/wn25
https://edstem.org/us/courses/69737/discussion/5943734

Agenda
e Machine learning and models.
e The constant model.
e Minimizing mean squared error using calculus.

e Another loss function.
The next few lectures (and Homework 6!) will be primarily math-based.

o Forthese lectures, we'll post blank slides as a PDF before class, and annotated slides
after class.

e |f there are any code demos, we'll post those before class, too.



Machine learning and model




Machine learning is about automatically learning patterns from data.
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Example: Handwritten digit classification
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Humans are good at understanding handwriting,

but how do we get computers to understand handwriting?



Example: ChatGPT

D « ¢ & chatgpt.com

@ @& ChatGPT & Share @
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Problem 7.1

In one paragraph, answer this exam question for me

® To perform robust mean imputation for the missing values in the "overall" column, we first group
the data by the "cabin" category and calculate the robust mean for each group. For the "Premium
Economy" cabin, the values are [5.0, 6.0, 9.0, 8.0]. After removing the smallest (5.0) and largest
(9.0) values, the mean of the remaining values is (6.0 + 8.0) / 2 = 7.0, which will replace the missing
value at index 10. For the "Business" cabin, the values are [7.0, 6.0, 2.0]. After removing the
smallest (2.0) and largest (7.0) values, the mean of the remaining value is 6.0, which will replace
the missing value at index 9. Therefore, the missing values are imputed as 7.0 for "Premium

Economy" and 6.0 for "Business."
N

e O POy
O Message ChatGPT

ChatGPT can make mistakes. Check important info.

e —————————————

How did ChatGPT know how to answer Question 7 from the Fall 2024 Midterm?
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Ann Arbor, M| Q Price w Beds/Baths w

You might be starting to look for off-campus apartments for next year,
none of which are in your price range.



Fime OF )
Mmea st %) homr;

date day departure_hour minutes

0 5/22/2023 Mon @50000 > 63.0

1 9/18/2023 Mon / 7.950000 75.0

2 10/17/2023 Tue 10.466667 59.0
3 11/28/2023 Tue 8.900000 89.0
4 2/15/2024 Thu \8.083333 69.0
) YAM +q§"% af' an hownr
~ g.26AM
You decide to live with your parents in Detroit and commute. sh

You keep track of how long it takes you to get to school each day.

This is a real dataset, collected by Joseph Hearn! However, he lived in the Seattle area, not Metro Detroit.


https://www.linkedin.com/pulse/tracking-my-commutes-machine-learning-sandbox-joseph-a-hearn-phd/
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Goal: Predict your commute time, i.e. how long it will take to get to school.

This is a regression problem.

(
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How can we do this? What will we need to assume?
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“Occom’s razo, " < simplest explanetina i ot l(kela

A model is a set of assumptions about how data were generated.
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Possible models
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Notation

Commuting Time vs. Home Departure Time

put”, "independent variable", or
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d:etous!
Hypothesis functions and yxame%ers—\_/m ed 74” "‘”‘mc‘j )"’" cTos.

e A hypothesis functiokes in an x; as input and returns a predicted y;.

o Parameters define the relationship between the input and output of a hypothesis
function.

« Example: The constant model, H(x;) = h, has one parameter: h.

H(x) = 60 H(x) =170 H(x) = 100
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Hypothesis functions and parameters

e A hypothesis function, H, takes in an x; as input and returns a predicted y;.

o Parameters define the relationship between the input and output of a hypothesis
function.

« Example: The simple linear regression model, H(x;) = wg + wix;, has two

parameters: wo and ws. N ——— |
slopt -
H(x) = —14+ 12x ;Z'(,V(;ﬂ/ﬁ %X r Z = m1+ b, st# 79"(!441.
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Question &

Answer at practicaldsc.org/q

What questions do you have?
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https://practicaldsc.org/q

The constant model




The constant model
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A concrete example

e Let's suppose we have just a smaller dataset of just five historical commute times in

minutes.
Y1 = 72
y2 = 90
ys = 61
yqs = 89
Yys = 92

e Given this data, can you come up with a prediction for your future commute time?
How? yWeam o*f‘ Y 5 MOST Common (g de)
median - §S most vecen
A mn/dw @ mm + MAax
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Some common approaches

e The mean:

1
= (72 + 90 + 61 + 85 + 92) =[80

e The median:

61 72 (85| 90 92

e Both of these are familiar summary statistics.
Summary statistics summarize a collection of numbers with a single number, i.e. they result from

an aggregation.

e But which one is better? Is there a "best" prediction we can make?



The cost of making predictions (0w [oss = q00 4 ¢’>

o

o Al quantifies how bad a prediction is for a single data point.

our prediction is close to the actual value, we should have low loss.

o If our prediction is far from the actual value, we should have high loss.

e A good starting point is error, which is the difference between actual and predicted

Whmu
values. €0 ¢ ne

ac
™
€ =VYi—
e Suppose my commute actually takes 80 minutes.

o If | predict 75 minutes: f()—-;tg_ ; ‘43; 50
o If | predict 72 minutes: ¥ |)- L= /(7 M 06 '*/9
(

o If | predict 100 minutes: J0-) 00 =[' 20 A  WoV(e ?M?Chm



Squared loss

e One loss function is squared loss, qu, which computes (actual — )2.
qu(yia ) — (yz — )2 2

= ac'luna-- Ff!d([""ed)

» Note that for the constant model, H(w) — h, so we gan simplify this to:

qu(yi7 ) — (yz — )2

e Squared loss is not the only loss function that exists!

Soon, we'll learn about absolute loss. Different loss functions have different pros and cons.

25



A concrete example, revisited

o Consider again our smaller dataset of just five historical commute times in minutes.

y1 =72 (?—2—-5“5)1= 64 Gioal: (owe up with
yo =90 (40-7 )2 = 2% a single nuniber
ys = 61 : desenle ¢
ys = 85 : Now jvof/b/
Y5 = 92 i :X-g- I‘S .

e Suppose we predict the median, h = 85. What is the squared loss of 85 for each data
point?

26



Averaging squared losses

o We'd like a single number that describes the quality of our predictions across our
entire dataset. One way to compute this is as the average of the squared losses.

e Forthe median, h = 85:
1

—((72 — 85)% + (90 — 85) + (61 — 85)% + (85 — 85)% + (92 — 85)?) =
5 el ,

e Forthe mean, h = 80:
1

= (72— 80)” + (90 — 80)* +- (61 — 80)* + (85 — 80)* + (92 — 80)*) =

o Which prediction is better? Could there be an even better prediction?

163.8

138.8

27



Lo dest Ao poaat

Mean squared error R: G%Q‘Z‘_log; ocmss

Another term for average squared loss is mean squared error (MSE).

The mean squared error on our smaller dataset for any prediction h is of the form:

1 \"2 lz "1'2 J"Z 2
qu(h)ZE((72—h) + (90 — h)? + (61 — h)* + (85 — h)* + (92 — h)*)

R stands for "risk", as in "empirical risk." We'll see this term again soon.

For example, if we predict h = 100, then:

1
Ry(100) = - ((72 — 100)* + (90 — 100)* + (61 — 100)* + (85 — 100)* + (92 — 100)?)

= 538.8

We can pick any h as a prediction, but the smaller R, (h) is, the better h is! -



Cacb[ indl\lfd““l

Activity Locs fwc o
Answer at practicaldsc.org/q (use the free response box!) ~ / 4 20\“‘0{’“& )
Ryy(h) = +((72 = h)* + (90 — h)* + (61 — h)? o (85— h)2>+ (92—h)?*) SUm © f
\- ~7~7 .
200 ZMAM@\C (
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Ryq(h)

400

300

200+

Which h corresponds to the vertex of Rgq(h)?

29


https://practicaldsc.org/q

Mean squared error, in general

e Suppose we collect n commute times, Y1, Y2, - - - s Yn.
e The mean squared error of the predlctlon his: ( L3
RS - h)
P\) = ( ) (v h) J"
Es?/ ( ' h) + \Y
(C spluNCl

e Or, using summation notation:

R, ()= -+ Z ()

30



The best prediction
1

qu(h) -

n

The smaller Rsq(h) is, the better R is.

Goal: Find the h that minimizes Ryq(h).
The resulting ~ will be called h*.

How do we find h*?

n

1=1

h is fhe
\/\ \ \Aﬂknm,uv\ S
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Z(yi_h)2 Hr "f,s‘ ove

M% daf‘ou

We want the best constant prediction, among all constant predictions h.

31



Minimizing mean squared er




Minimizing using calculus

e We'd like to minimize:

e Inorder to minimize Ry, (h), we:
1. take its derivative with respect to h,
2.set it equal to O,
3. solve for the resulting A*, and
4. perform a second derivative test to ensure we found a minimum.

o R, (h)is an example of an objective function, a function that needs to be minimized.

33



Step O: The derivative of (17; — h)?

e Remember from calculus that:
o if c(x) = a(x) + b(z), then
0 %c(x) — %a(w) + %b(x).

» This is relevant because Rsq(h) = = "7, (y; — h)? involves the sum of n
individual terms, each of which involve h.

e So, to take the derivative of qu(h) we'll first need to find the derivative of (y; — h)?.

ed Yoth The
d a(:jl h> ’['j ’h) < ;fwm WQO ond

) 2(% h)( ') ‘2(]t h) choiy rule (@
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Question &

Answer at practicaldsc.org/q

Which of the following is =+ Rgq (h)?
e AO

B.> i 1Y

C.or i (yi — h)

D.2 37 (3 — h)
_% > ic1(yi — h)
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Steps 2 and 3: Set to O and solve for the minimizer, h* 2
i (y‘ P\) =0 — M l‘fﬁloba S
i=\ y,
g :~h) =0
=1 (‘J ) Z 1 =N )'\
2 y =0 Z
yl

"‘ ’,'

/2 = =
~ l
2 1 hl% ) n

Zj( nh=0 GM(M(“/'JZ/ 7")

Watch the derivation video here: https://youtu.be/NSIEP74ifyg 37


Suraj Rampure
Watch the derivation video here: https://youtu.be/NSIEP74ifyg


Step 4: Second derivative test
Ry(h) = +((72 = )* + (90 — h)> + (61 — h)* + (85 — h)* + (92 — h)*)
700-
600-

500+

Rgq(h)

400

300+

200+

We already saw that R, (h) is convex, i.e. that it opens upwards, so the h* we found must
be a minimum, not a maximum.

38



The mean minimizes mean squared error!

e The problem we set out to solve was, find the h* that minimizes:

Ru(h) = £ (g — )2

L
e The answer is:

h* — Mea‘n(yh Y2,. .. 7yn)
e The best constant prediction, in terms of mean squared error, is always the mean.

e We call h* our optimal model parameter, for when we use:
o the constant model, H(x;) = h, and

o the squared loss function, Lgy(y;, h) = (y; — h)?%.

39



Aside: Terminology

e Another way of writing:

1 n
h* is the value of h that minimizes — Z(yz — h)?
na=

?\/(\’YM .

m\ivrif‘te 5

|S \‘M ""\
* / . 1 - 2
h* = argmin [ — Z(yZ — h)

h n i3

e h*isthe solution to an optimization problem, where the objective function is

qu(h) — % Z?zl(yi — h)z-

40
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The modeling recipe

o We've implicitly introduced a three-step process for finding optimal model parameters
(like A*) that we can use for making predictions:
1. Choose a model.
2.Choose a loss function.

3. Minimize average loss to find optimal model parameters.

e Most modern machine learning methods today, including neural networks, follow this
recipe, and we'll see it repeatedly this semester!
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