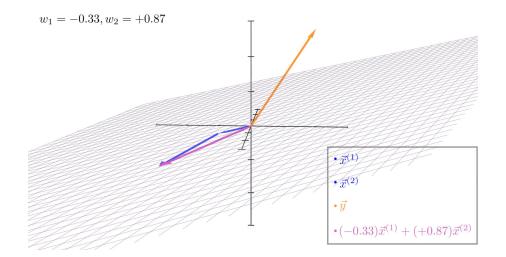
Moving to multiple dimensions

- Let's now consider three vectors, \vec{y} , $\vec{x}^{(1)}$, and $\vec{x}^{(2)}$, all in \mathbb{R}^n .
- Question: What vector in $\mathrm{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
 - \circ Vectors in $\mathrm{span}(ec x^{(1)},ec x^{(2)})$ are of the form $w_1ec x^{(1)}+w_2ec x^{(2)}$, where $w_1,w_2\in\mathbb{R}$ are scalars.
- Before trying to answer, let's watch ## this animation that Jack, one of our tutors, made.



Minimizing projection error in multiple dimensions

- Question: What vector in $\mathrm{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
 - \circ That is, what vector minimizes $||\vec{e}||$, where:

$$ec{e} = ec{y} - w_1 ec{x}^{(1)} - w_2 ec{x}^{(2)}$$

- Answer: It's the vector such that $w_1\vec{x}^{(1)} + w_2\vec{x}^{(2)}$ is orthogonal to \vec{e} .
- Issue: Solving for w_1 and w_2 in the following equation is difficult:

$$(w_1\vec{x}^{(1)} + w_2\vec{x}^{(2)}) \cdot (\vec{y} - w_1\vec{x}^{(1)} - w_2\vec{x}^{(2)}) = 0$$
any vector in
$$(\vec{x}^{(1)}, \vec{x}^{(2)})$$
can be written in this form!

Minimizing projection error in multiple dimensions

• It's hard for us to solve for w_1 and w_2 in:

$$\left(w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)}\right) \cdot \underbrace{\left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)}\right)}_{\vec{e}} = 0$$

- Observation: All we really need is for $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ to individually be orthogonal to \vec{e} .
 - \circ That is, it's sufficient for \vec{e} to be orthogonal to the spanning vectors themselves.
- If $\vec{x}^{(1)} \cdot \vec{e} = 0$ and $\vec{x}^{(2)} \cdot \vec{e} = 0$, then:

$$\left(\omega_{1} \vec{\chi}^{(1)} + \omega_{2} \vec{\chi}^{(2)} \right) \cdot \vec{e} = \omega_{1} \vec{\chi}^{(1)} \cdot \vec{e} + \omega_{2} \vec{\chi}^{(2)} \cdot \vec{e}$$

$$= \omega_{1} \left(\vec{\chi}^{(1)} \cdot \vec{e} \right) + \omega_{2} \left(\vec{\chi}^{(2)} \cdot \vec{e} \right)$$

$$= \omega_{1} \left(o \right) + \omega_{2} \left(o \right)$$

$$= 0$$

Minimizing projection error in multiple dimensions

- Question: What vector in $\mathrm{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
- Answer: It's the vector such that $w_1\vec{x}^{(1)}+w_2\vec{x}^{(2)}$ is orthogonal to $\vec{e}=\vec{y}-w_1\vec{x}^{(1)}-w_2\vec{x}^{(2)}$.
- Equivalently, it's the vector such that $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ are both orthogonal to \vec{e} :

$$egin{aligned} ec{m{x}^{(1)}} \cdot \left(ec{m{y}} - w_1 ec{m{x}^{(1)}} - w_2 ec{m{x}^{(2)}}
ight) = 0 \ ec{m{x}^{(2)}} \cdot \left(ec{m{y}} - w_1 ec{m{x}^{(1)}} - w_2 ec{m{x}^{(2)}}
ight) = 0 \end{aligned}$$

• This is a system of two equations, two unknowns (w_1 and w_2), but it still looks difficult to solve.

Now what?

• We're looking for the scalars w_1 and w_2 that satisfy the following equations:

$$egin{aligned} ec{m{x}^{(1)}} \cdot \left(ec{m{y}} - w_1 ec{m{x}^{(1)}} - w_2 ec{m{x}^{(2)}}
ight) = 0 \ ec{m{x}^{(2)}} \cdot \left(ec{m{y}} - w_1 ec{m{x}^{(1)}} - w_2 ec{m{x}^{(2)}}
ight) = 0 \end{aligned}$$

- In this example, we just have two spanning vectors, $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$.
- If we had any more, this system of equations would get extremely messy, extremely quickly.
- Idea: Rewrite the above system of equations as a single equation, involving matrixvector products.