Dot products

Vectors

TR: real numbers

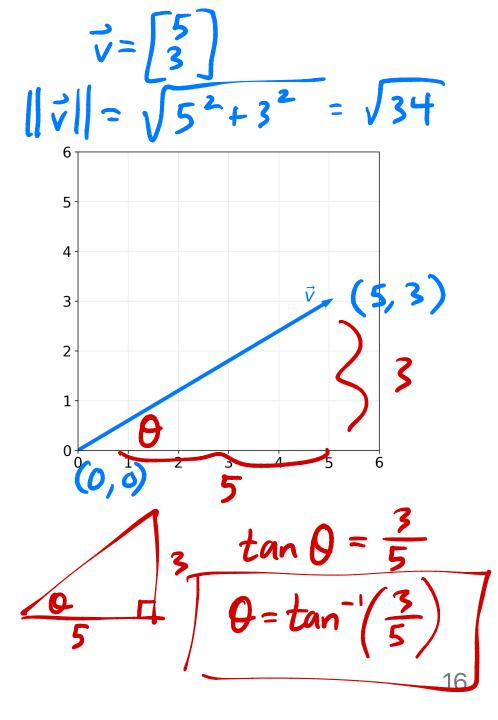
in Overleaf:

mathbb & R3

n: there are n real numbers in our vector.

- A vector in \mathbb{R}^n is an ordered collection of n numbers.
- We use lower-case letters with an arrow on top to represent vectors, and we usually write vectors as columns.

$$ec{v} = egin{bmatrix} 8 \ 3 \ -2 \ 5 \end{bmatrix}$$


- Another way of writing the above vector is $\vec{v} = [8, 3, -2, 5]^\intercal$.
- Since $ec{v}$ has four **components**, we say $ec{v} \in \mathbb{R}^4$.

The geometric interpretation of a vector

- A vector $ec{v}=egin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ is an arrow to the point (v_1,v_2,\ldots,v_n) from the origin.
 - ullet The **length**, or L_2 **norm**, of $ec{v}$ is:

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$
 Multi-lineasional Pythagore an Heaven • A vector is sometimes described as an object with a

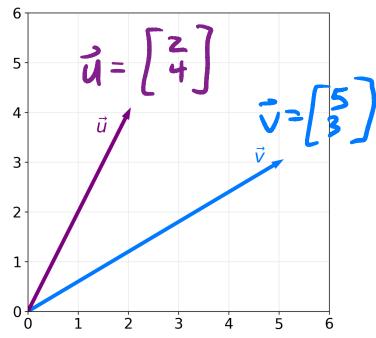
 A vector is sometimes described as an object with a magnitude/length and direction.

Dot product: coordinate definition

=) the same dimension

• The **dot product** of two vectors $ec{u}$ and $ec{v}$ in \mathbb{R}^n is written as:

$$\vec{u}\cdot\vec{v}=\vec{u}^{\intercal}\vec{v}$$

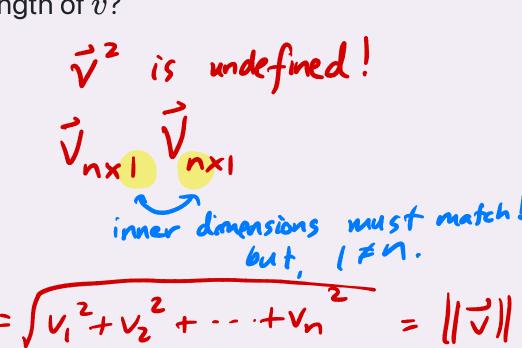

The computational definition of the dot product:

$$ec{u}\cdotec{v}=\sum_{i=1}^n u_iv_i=u_1v_1+u_2v_2+\ldots+u_nv_n$$

• The result is a **scalar**, i.e. a single number.

$$\vec{u} \cdot \vec{v} = (2)(5) + (4)(3) = 10 + 12 = (22) \quad \text{Scalar!}$$

$$\vec{u} \cdot \vec{v} = [2 \quad 4] \quad \text{just on a point of the control of th$$


Question 🤔

$\vec{\nabla} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{bmatrix}$

Answer at q.dsc40a.com

Which of these is another expression for the length of \vec{v} ?

- ullet A. $ec{v}\cdotec{v}$
- B. $\sqrt{\vec{v}^2}$
- ullet C. $\sqrt{ec{v}\cdotec{v}}$
- v^2
- E. More than one of the above.

