Lecture 16

Regression using Linear Algebra

EECS 398-003: Practical Data Science, Fall 2024

practicaldsc.org • github.com/practicaldsc/fa24

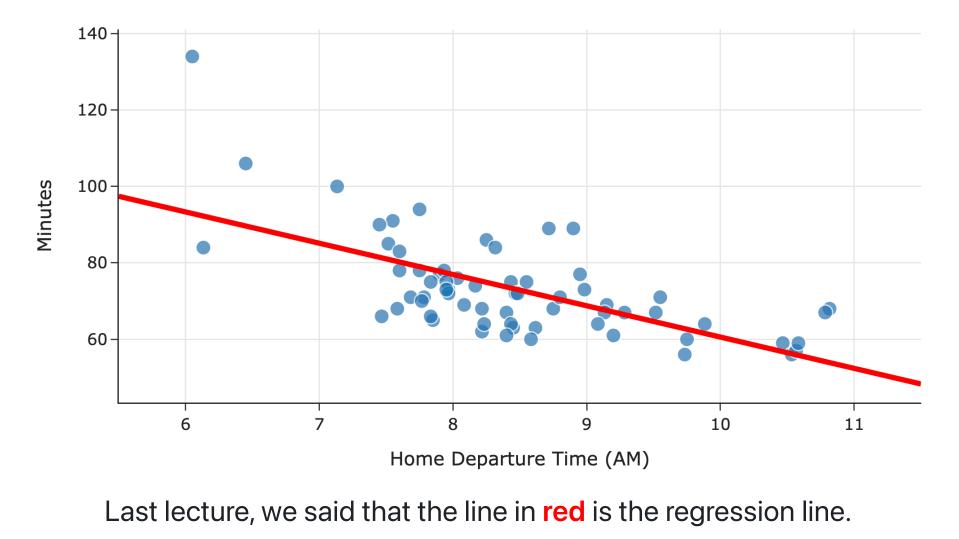
Announcements 🤜

- Homework 7 is due tonight.
- We've released a Grade Report on Gradescope that has your current overall score in the class, scores on all assignments, and slip day usage so far.
 See #232 on Ed for more details.
- Some updates to the **Syllabus**:
 - You now have 8 slip days instead of 6!
 - The final homework, called the Portfolio Homework, will be an open-ended investigation using the tools from both halves of the semester. Details to come.
 - You'll end up making a website!
 - You can work with a partner, but can't drop it or use slip days on it.
- The IA application is out for next semester! See **#238 on Ed** for more details.

Agenda

- Recap: Simple linear regression.
- Interpreting the formulas.
- Connections to related models.
- Regression and linear algebra.
- Multiple linear regression.

Recap: Simple linear regression



But how did we find this line?

Recap: Simple linear regression

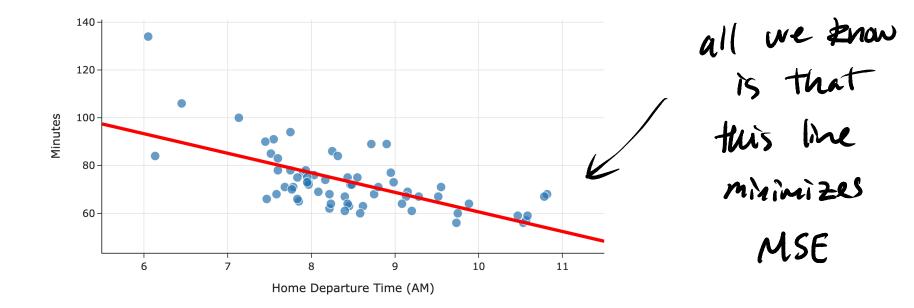
- Goal: Use the modeling recipe to find the "best" simple linear hypothesis function.
 - 1. Model: $H(x) = w_0 + w_1 x$, slove 2. Loss function: $L_{sq}(y_i, H(x_i)) = (y_i H(x_i))^2$. 3. Minimize empirical risk: $R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i (w_0 + w_1 x_i))^2$.

• The resulting line, $H^*(x) = w_0^* + w_1^* x$, is the line that minimizes mean squared error. It's often called the (least squares) regression line, and the optimal linear predictor.

Interpreting the formulas

Causality

• Can we conclude that leaving later **causes** you to get to school quicker?



Predicted Commute Time = 142.25 - 8.19 * Departure Hour

• No! correlation = causation!

Interpreting the slope

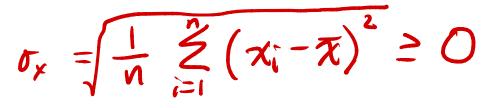
no units for v!

$$w_1^* = r \frac{\sigma_y}{\sigma_x} \overset{\mu}{\leftarrow} \frac{\text{minutes}}{\text{hours}}$$

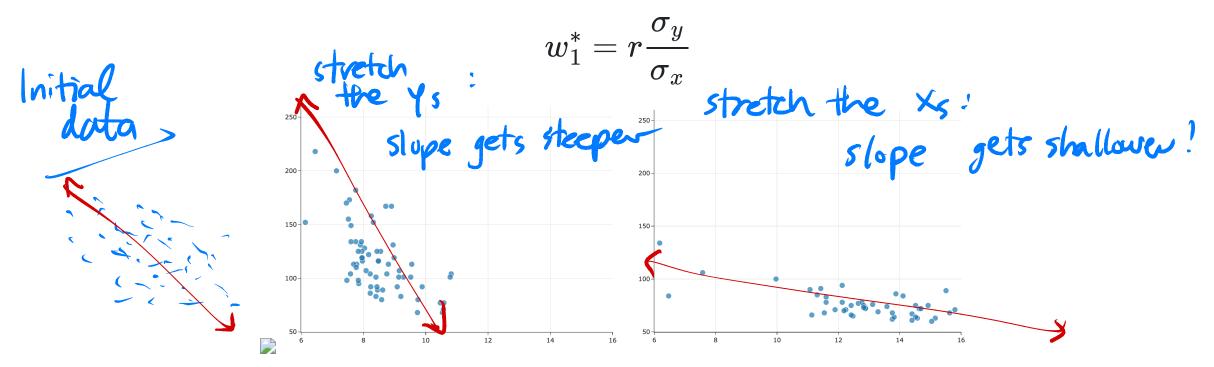
.

- The units of the slope are **units of** *y* **per units of** *x*.
- In our commute times example, in $H^st(x)=142.25-8.19x$, our predicted commute time decreases by 8.19 minutes per hour. Ν

•
$$\chi_i$$
: hours (8.45 hours, 10.5 hours)
= $8:26 \text{ AM}$ = 10.30 AM
• y_i : minutes (e.g. 100 minutes)
 $H^{*}(\chi) = 142.25 - (8.19)$ $\Re \cdot 19$ minutes/hour



Interpreting the slope

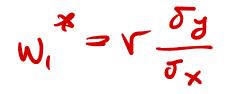


• Since $\sigma_x \geq 0$ and $\sigma_y \geq 0$, the slope's sign is r's sign.

- As the y values get more spread out, σ_y increases, so the slope gets steeper.
- As the x values get more spread out, σ_x increases, so the slope gets shallower.

Interpreting the intercept

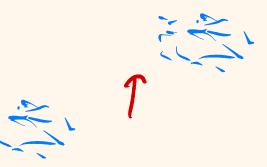
Predicted Commute Time = 142.25 - 8.19 * Departure Hour



$$w_0^*=ar y-w_1^*ar x$$
 –

140-• What are the units of the intercept? 120 same as y: minutes! Minutes 100 80 • What is the value of $H^*(\bar{x})$? 60 $H^{*}(\pi) = \omega_{0}^{*} + \omega_{1}^{*} \times i$ 11 6 7 8 9 10 Home Departure Time (AM) = $\omega_0^* + \omega_1^* \overline{\chi}^{(2)}$ $H^{\star}(\bar{\chi})$ X: Nours I: minutes average t, me an average

Question 😕



Answer at practicaldsc.org/q

We fit a regression line to predict commute times given departure hour. Then, we add 75 minutes to all commute times in our dataset. What happens to the resulting regression

line?

- A. Slope increases, intercept increases.
- B. Slope decreases, intercept increases.

C. Slope stays the same, intercept increases.

• D. Slope stays the same, intercept stays the same.

 $N_{0}^{*} = \overline{y} - \omega_{1}^{*} \overline{x}$ His increases by 75!

Question 😕

$$W_{i}^{*} = r \frac{\sigma_{1}}{\sigma_{x}} = \frac{\sigma_{1}}{\sigma_{x}} = \frac{\sigma_{1}}{\sigma_{x}}$$
 but there's
another solution

Answer at practicaldsc.org/q

Consider a dataset with just two points, (2, 5) and (4, 15). Suppose we want to fit a linear hypothesis function to this dataset using squared loss. What are the values of w_0^* and w_1^* that minimize empirical risk?

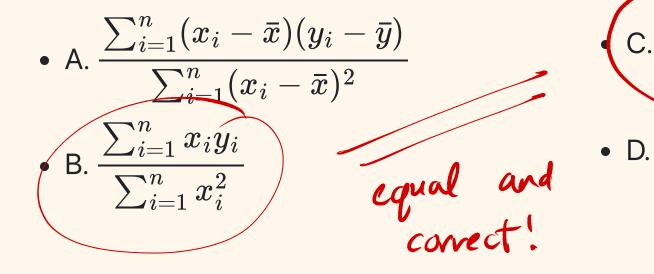
- A. $w_0^*=2$, $w_1^*=5$
- B. $w_0^*=3$, $w_1^*=10$
- C. $w_0^* = -2$, $w_1^* = 5$ • D. $w_0^* = -5$, $w_1^* = 5$

Connections to related models

Question 😕

Answer at practicaldsc.org/q

Suppose we chose the model $H(x) = w_1 x$ and squared loss. What is the optimal model parameter, w_1^* ?



forced through (0,0)

 $\sum_{i=1}^n x_i y_i$

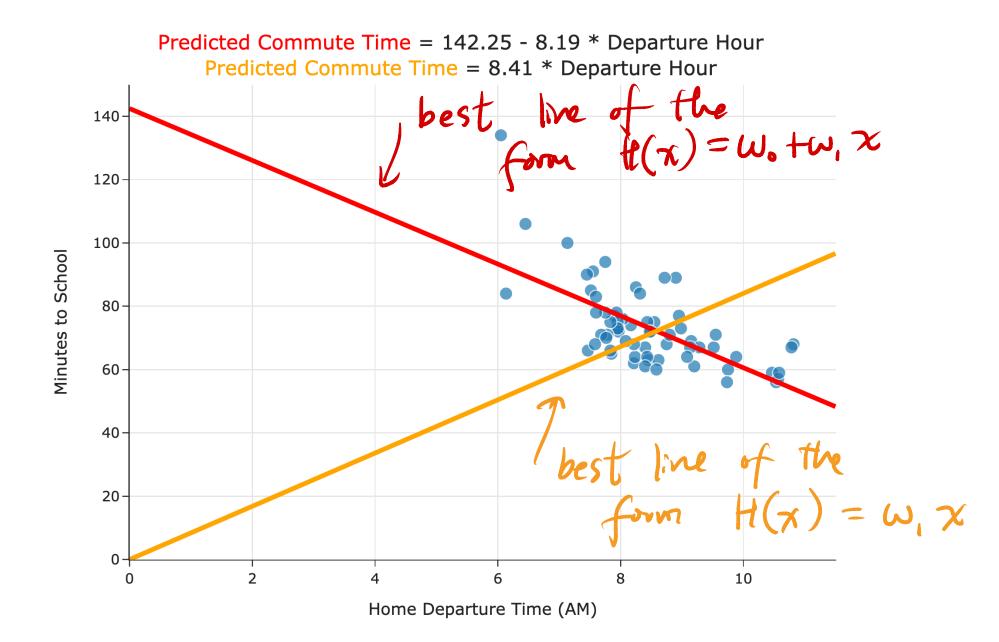
 $rac{\sum_{i=1}^n y_i}{\sum_{i=1}^n x_i}$

Exercise

Suppose we chose the model $H(x) = w_1 x$ and squared loss.

What is the optimal model parameter, w_1^* ? $R_{sq}(w_1) = \frac{1}{n} \sum_{i=1}^{s} (y_i - w_i, x_i)$ -) take derivative wit W, set to O $\frac{dR_{sq}}{dw} = \frac{1}{n} \sum_{i=1}^{n} Z(y_i - w_i x_i)(-x_i) = -\frac{2}{n} \sum_{i=1}^{n} (x_i y_i - w_i x_i^2) = 0$ $\hat{z}_{x_iy_i} - \omega_i \hat{z}_{x_i} = 0 \Rightarrow$

16



Exercise

Suppose we choose the model $H(x) = w_0$ and squared loss. What is the optimal model parameter, w_0^* ?

Comparing mean squared errors

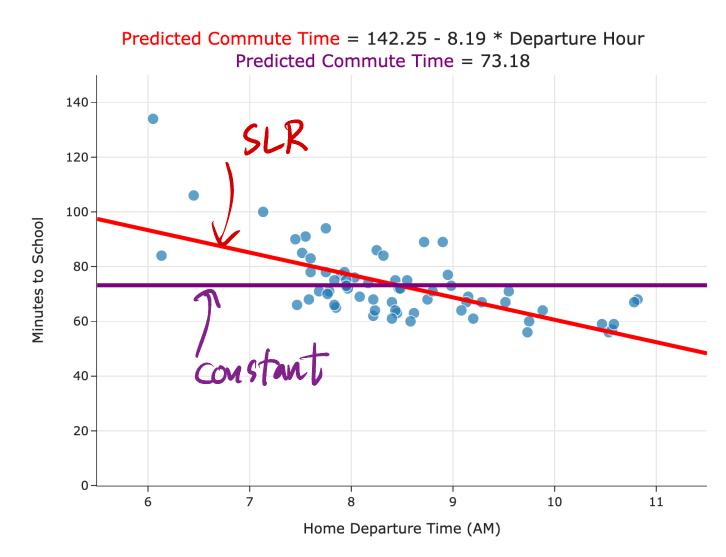
- With both:
 - $\circ\,$ the constant model, H(x)=h, and
 - $\circ\,$ the simple linear regression model, $H(x)=w_0+w_1x$,

when we chose squared loss, we minimized mean squared error to find optimal parameters:

$$R_{ ext{sq}}(H) = rac{1}{n}\sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

• Which model minimizes mean squared error more?

Comparing mean squared errors



$$ext{MSE} = rac{1}{n}\sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

 The MSE of the best simple linear regression model is ≈ 97 . MANIANCE • The MSE of the best constant model is ≈ 167 . • The simple linear regression model is a more flexible version of the constant model.

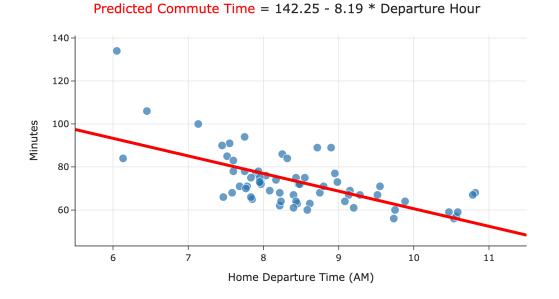
Regression and linear algebra

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
 - Example: Predicting commute times using departure hour and the day of the month.
- Thinking about linear regression in terms of **matrices and vectors** will allow us to find hypothesis functions that:
 - Use multiple features (input variables).

 $\circ\,$ Are non-linear in the features, e.g. $H(x)=w_0+w_1x+w_2x^2.$

Simple linear regression, revisited



- Model: $H(x) = w_0 + w_1 x$.
- Loss function: $(y_i H(x_i))^2$.
- To find w_0^* and w_1^* , we minimized empirical risk, i.e. average loss:

$$R_{
m sq}(H) = rac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$$

- Observation: $R_{
m sq}(w_0,w_1)$ kind of looks like the formula for the norm of a vector,

$$ec{v} \| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

Regression and linear algebra

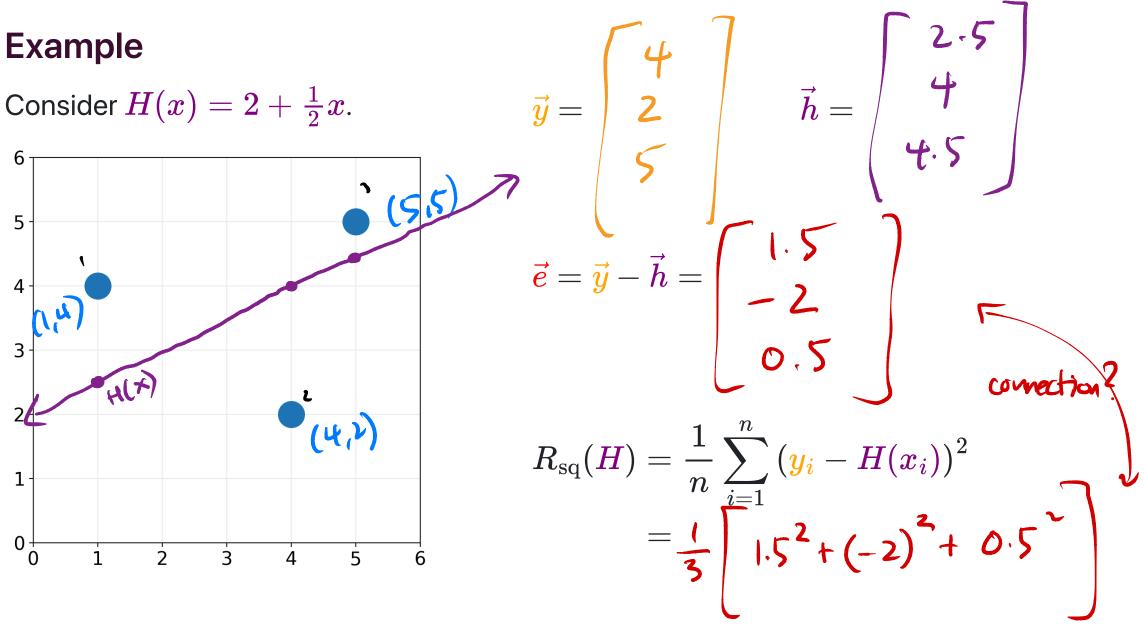
Let's define a few new terms:

• The observation vector is the vector $\vec{y} \in \mathbb{R}^n$. This is the vector of observed "actual values".

y has n things in it, all of which are real numbers

- The **hypothesis vector** is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- The error vector is the vector $\vec{e} \in \mathbb{R}^n$ with components:

$$\vec{\gamma} = \begin{bmatrix} \gamma_{i} \\ \gamma_{2} \\ \gamma_{3} \\ \vdots \\ \gamma_{n} \end{bmatrix}_{n} \vec{h} = \begin{bmatrix} H(x_{i}) \\ H(x_{2}) \\ H(x_{n}) \\ \vdots \\ H(x_{n}) \end{bmatrix}_{n} \vec{e} = \begin{bmatrix} \gamma_{i} - H(x_{i}) \\ \gamma_{i} - H(x_{2}) \\ \vdots \\ \vdots \\ H(x_{n}) \end{bmatrix}_{n}$$



Regression and linear algebra

Let's define a few new terms:

- The observation vector is the vector $\vec{y} \in \mathbb{R}^n$. This is the vector of observed "actual values".
- The **hypothesis vector** is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- The error vector is the vector $\vec{e} \in \mathbb{R}^n$ with components:

$$\boldsymbol{e_i} = \boldsymbol{y_i} - \boldsymbol{H}(\boldsymbol{x_i})$$

• Key idea: We can rewrite the mean squared error of *H* as:

$$(R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2 = \frac{1}{n} \|\vec{e}\|^2 = \frac{1}{n} \|\vec{y} - \vec{h}\|^2$$

The hypothesis vector

- The **hypothesis vector** is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- For the linear hypothesis function $H(x) = w_0 + w_1 x$, the hypothesis vector can be written:

$$\vec{h} = \begin{bmatrix} w_0 + w_1 x_1 \\ w_0 + w_1 x_2 \\ \vdots \\ w_0 + w_1 x_n \end{bmatrix}_{n < 1} = \begin{bmatrix} 1 & x_1 \\ x_1 & x_2 \\ \vdots & \vdots \\ x_n & y_1 & y_2 \\ x_n & y_1 & y_1 \\ x_n & y_n & y_n \\ x_n & y_n & y_n$$

Rewriting the mean squared error

• Define the **design matrix** $X \in \mathbb{R}^{n \times 2}$ as:

- Define the parameter vector $ec w \in \mathbb{R}^2$ to be $ec w = egin{bmatrix} w_0 \\ w_1 \end{bmatrix}$.
- Then, $\vec{h} = X\vec{w}$, so the mean squared error becomes:

$$R_{ ext{sq}}(H) = rac{1}{n} \|ec{m{y}} - ec{m{h}}\|^2 \implies egin{array}{c} R_{ ext{sq}}(ec{w}) = rac{1}{n} \|ec{m{y}} - m{X}ec{w}\|^2 \end{bmatrix}$$

 $X = egin{bmatrix} 1 & x_1 \ 1 & x_2 \ dots & dots \ dots$

 $h = X \vec{w}$

Minimizing mean squared error, again

• To find the optimal model parameters for simple linear regression, w_0^* and w_1^* , we previously minimized:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n (oldsymbol{y_i} - (w_0+w_1oldsymbol{x_i}))^2$$

• Now that we've reframed the simple linear regression problem in terms of linear algebra, we can find w_0^* and w_1^* by finding the $\vec{w}^* = \begin{bmatrix} w_0^* \\ w_1^* \end{bmatrix}$ that minimizes:

$$R_{ ext{sq}}(ec{w}) = rac{1}{n} \|ec{y} - oldsymbol{X}ec{w}\|^2$$

• Do we already know the $ec{w}^*$ that minimizes $R_{
m sq}(ec{w})$?

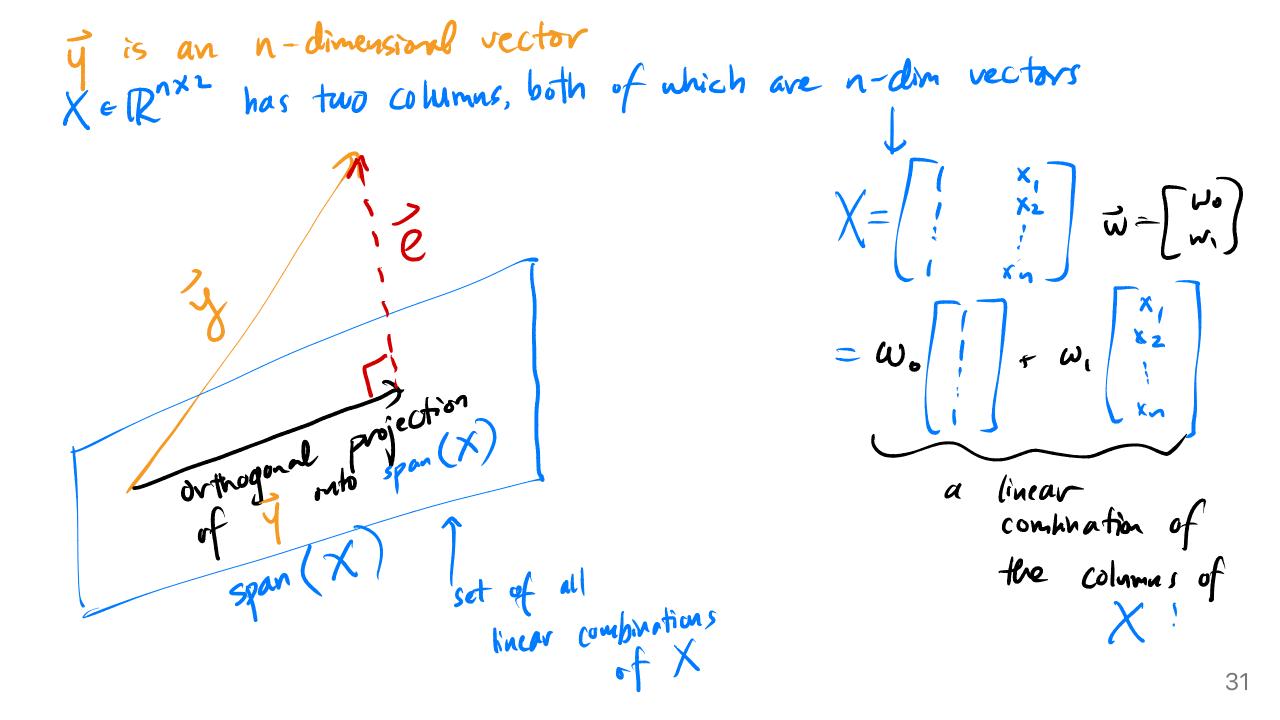
Minimizing mean squared error, using projections?

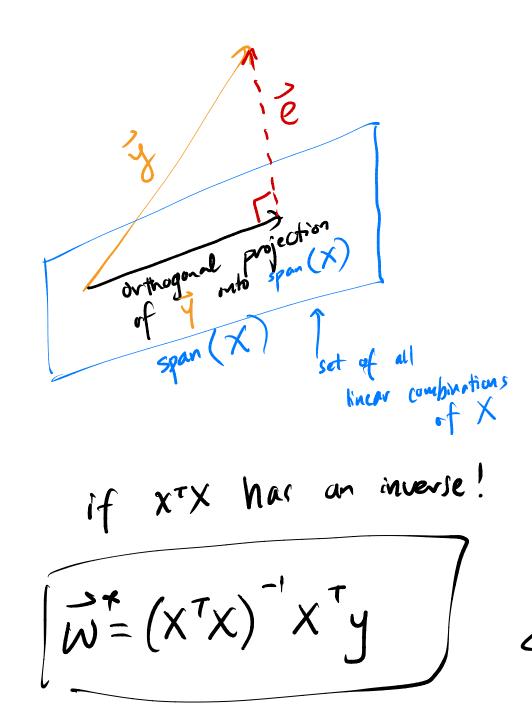
- X and \vec{y} are fixed: they come from our data.
- Our goal is to pick the \vec{w}^* that minimizes:

$$R_{ ext{sq}}(ec{w}) = rac{1}{n} \|ec{y} - oldsymbol{X}ec{w}\|^2$$

- This is equivalent to picking the \vec{w}^* that minimizes: $\|\vec{y} - X\vec{w}\|^2 \longrightarrow \|\vec{y} - X\vec{w}\| = \|\vec{e}\|$
- This is equivalent to finding the w_0^* and w_1^* so that $X\vec{w}^*$ is as "close" to \vec{y} as possible.
- Solution: Find the orthogonal projection of \vec{y} onto $\operatorname{span}(X)$!
- We already did this in LARDS, Section 8!

a>b $a>b^2$





Groul' Find w" such that é is orthogonal to span(X). equivalent $\chi \vec{e} = 0$ $\mathbf{x}^{\mathsf{T}}(\mathbf{y}-\mathbf{x}\mathbf{w}) = \mathbf{0}$ $X^T y - X^T X w = 0$ $X^T X \overline{w} = X \overline{Y}$ normal equation S 32

An optimization problem we've seen before

• The optimal parameter vector, $ec{w}^* = \begin{bmatrix} w_0^* & w_1^* \end{bmatrix}^T$, is the one that minimizes:

$$R_{ ext{sq}}(ec{w}) = rac{1}{n} \|ec{y} - oldsymbol{X}ec{w}\|^2$$

• In LARDS Section 8 (and your linear algebra class), we showed that the \vec{w}^* that minimizes the length of the error vector, $\|\vec{e}\| = \|\vec{y} - X\vec{w}\|$, is the one that satisifes the **normal equations**:

$$X^T X \vec{w}^* = X^T \vec{y}$$

• The minimizer of $\|ec{e}\|$ is the same as the minimizer of $R_{
m sq}(ec{w}).$

$$\frac{1}{n} \|\vec{e}\|^2 = \frac{1}{n} \|\vec{y} - X\vec{w}\|^2$$

• Key idea: The \vec{w}^* that solves the normal equations also minimizes $R_{
m sq}(\vec{w})!$

The normal equations

• The normal equations are the system of 2 equations and 2 unknowns defined by:

$$egin{array}{lll} X^T X ec{w}^* = X^T ec{y} \end{array}$$

- Why are they called the **normal** equations?
- If $X^T X$ is invertible, there is a unique solution to the normal equations:

 $\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$

• If $X^T X$ is not invertible, then there are infinitely many solutions to the normal equations. We will explore this idea as the semester progresses.

The optimal parameter vector, $ec{w}^*$

- To find the optimal model parameters for simple linear regression, w_0^* and w_1^* , we previously minimized $R_{
 m sq}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n (y_i (w_0 + w_1 x_i))^2$.
 - We found, using calculus, that:

•
$$w_1^* = rac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = r rac{\sigma_y}{\sigma_x}$$

• $w_0^* = \bar{y} - w_1^* \bar{x}.$

• Another way of finding optimal model parameters for simple linear regression is to find the \vec{w}^* that minimizes $R_{
m sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$.

 $\circ~$ The minimizer, if $X^T X$ is invertible, is the vector $\left|ec{w}^* = (X^T X)^{-1} X^T ec{y}
ight|$

• These formulas are equivalent!

Code demo

- To give us a break from math, we'll switch to a notebook, showing that both formulas that is, (1) the formulas for w_1^* and w_0^* we found using calculus, and (2) the formula for \vec{w}^* we found using linear algebra give the same results.
 - \circ You'll prove this in Homework 8 \cong .
- The supplementary notebook is posted in the usual place on GitHub and the course website.
- Then, we'll use our new linear algebraic formulation of regression to incorporate **multiple features** in our prediction process.

Summary: Regression and linear algebra

• Define the design matrix $X \in \mathbb{R}^{n \times 2}$, observation vector $\vec{y} \in \mathbb{R}^n$, and parameter vector $\vec{w} \in \mathbb{R}^2$ as:

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_n \end{bmatrix} \qquad \vec{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

• How do we make the hypothesis vector, $\vec{h} = X\vec{w}$, as close to \vec{y} as possible? Use the solution to the normal equations, \vec{w}^* :

$$ec{w}^* = (X^T X)^{-1} X^T ec{y}$$

• We chose \vec{w}^* so that $\vec{h}^* = X\vec{w}^*$ is the projection of \vec{y} onto the span of the columns of the design matrix, X.

Multiple linear regression

	departure_hour	day_of_month	minutes
0	10.816667	15	68.0
1	7.750000	16	94.0
2	8.450000	22	63.0
3	7.133333	23	100.0
4	9.150000	30	69.0
•••			

So far, we've fit **simple** linear regression models, which use only **one** feature ('departure_hour') for making predictions.

Incorporating multiple features

• In the context of the commute times dataset, the **simple** linear regression model we fit was of the form:

 $ext{pred. commute} = H(ext{departure hour}) \ = w_0 + w_1 \cdot ext{departure hour}$

- Now, we'll try and fit a linear regression model of the form: pred. commute = H(departure hour) dw f math)= $w_0 + w_1 \cdot \text{departure hour} + w_2 \cdot \text{day of month}$
- Linear regression with **multiple** features is called **multiple linear regression**.
- How do we find w_0^st, w_1^st , and $w_2^st?$

Geometric interpretation

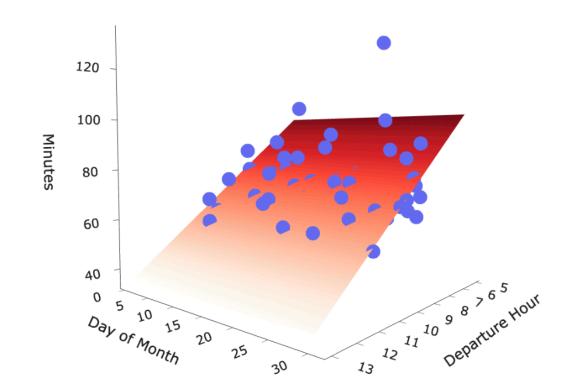
• The hypothesis function:

```
H(	ext{departure hour}) = w_0 + w_1 \cdot 	ext{departure hour}
```

looks like a **line** in 2D.

- Questions:
 - How many dimensions do we need to graph the hypothesis function: $dw_1 + w_1 + w_1 + w_1 + w_2 + w_2 + w_1 + w_2 + w_1 + w_2 + w_1 + w_2 + w$
 - What is the shape of the hypothesis function?

Commute Time vs. Departure Hour and Day of Month



Our new hypothesis function is a **plane** in 3D!

Our goal is to find the **plane** of best fit that pierces through the cloud of points.

The hypothesis vector

• When our hypothesis function is of the form:

 $H(ext{departure hour}) = w_0 + w_1 \cdot ext{departure hour} + w_2 \cdot ext{day of month}$ the hypothesis vector $ec{h} \in \mathbb{R}^n$ can be written as:

$$\vec{h} = \begin{bmatrix} H(\text{departure hour}_1, \text{day}_1) \\ H(\text{departure hour}_2, \text{day}_2) \\ \dots \\ H(\text{departure hour}_n, \text{day}_n) \end{bmatrix} = \begin{bmatrix} 1 & \text{departure hour}_1 & \text{day}_1 \\ 1 & \text{departure hour}_2 & \text{day}_2 \\ \dots & \dots & \dots \\ 1 & \text{departure hour}_n & \text{day}_n \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}_{3 \times 1}$$

Finding the optimal parameters

• To find the optimal parameter vector, \vec{w}^* , we can use the **design matrix** $X \in \mathbb{R}^{n \times 3}$ and **observation vector** $\vec{y} \in \mathbb{R}^n$:

$$X = \begin{bmatrix} 1 & \text{departure hour}_1 & \text{day}_1 \\ 1 & \text{departure hour}_2 & \text{day}_2 \\ \dots & \dots & \dots \\ 1 & \text{departure hour}_n & \text{day}_n \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} \text{commute time}_1 \\ \text{commute time}_2 \\ \vdots \\ \text{commute time}_n \end{bmatrix}$$

• Then, all we need to do is solve the normal equations once again:

$$X^T X ec{w}^* = X^T ec{y}$$

If $X^T X$ is invertible, we know the solution is:

$$ec{w}^* = (X^T X)^{-1} X^T ec{y}$$

Code demo

- Let's switch back to the notebook and use what we've just learned to find the w_0^*, w_1^* , and w_2^* that minimize mean squared error for the following hypothesis function: $H(ext{departure hour}) = w_0 + w_1 \cdot ext{departure hour} + w_2 \cdot ext{day of month}$
- The supplementary notebook is posted in the usual place on GitHub and the course website.
- Next class, we'll present a more general formulation of multiple linear regression and see how it can be used to incorporate (many) more sophisticated features.
- Then, we'll start discussing the nature of **how we choose which features to use**, and why more isn't always better.