Lecture 16

Regression using Linear Algebra

1

EECS 398-003: Practical Data Science, Fall 2024

practicaldsc.org • github.com/practicaldsc/fa24

Announcements

- Homework 7 is due tonight.
- We've released a Grade Report on Gradescope that has your current overall score in the class, scores on all assignments, and slip day usage so far. See [#232](https://edstem.org/us/courses/61012/discussion/5538979) on Ed for more details.
- Some updates to the **[Syllabus:](https://practicaldsc.org/syllabus)**
	- You now have 8 slip days instead of 6!
	- The final homework, called the Portfolio Homework, will be an open-ended investigation using the tools from both halves of the semester. Details to come.
		- You'll end up making a website!
		- You can work with a partner, but can't drop it or use slip days on it.
- The IA application is out for next semester! See [#238](https://edstem.org/us/courses/61012/discussion/5563220) on Ed for more details.

Agenda

- Recap: Simple linear regression.
- Interpreting the formulas.
- Connections to related models.
- Regression and linear algebra.
- Multiple linear regression.

Recap: Simple linear regression

But how did we find this line?

Recap: Simple linear regression

Goal: Use the modeling recipe to find the "best" simple linear hypothesis function.

1. Model:
$$
H(x) = w_0 + w_1 x
$$
.
\n2. Loss function: $L_{sq}(y_i, H(x_i)) = (y_i - H(x_i))^2$.
\n3. Minimize empirical risk: $R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$.

$$
\implies w_1^* = \displaystyle\frac{\displaystyle\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})}{\displaystyle\sum_{i=1}^n(x_i-\bar{x})^2}=r\frac{\sigma_y}{\sigma_x} \hspace{1cm} w_0^* = \bar{y} - w_1^*\bar{x}
$$

 $\bullet\,$ The resulting line, $H^*(x)=w_0^*+w_1^*x$, is the line that minimizes mean squared error. It's often called the (least squares) regression line, and the optimal linear predictor. $\qquad \qquad 6$

Interpreting the formulas

Causality

Can we conclude that leaving later causes you to get to school quicker?

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

Interpreting the slope

$$
w_1^*=r\frac{\sigma_y}{\sigma_x}
$$

- The units of the slope are units of y per units of x .
- In our commute times example, in $H^*(x) = 142.25 8.19x$, our predicted commute time decreases by 8.19 minutes per hour.

Interpreting the slope

- $\bullet\,$ Since $\sigma_x\geq 0$ and $\sigma_y\geq 0$, the slope's sign is r 's sign.
- As the y values get more spread out, σ_y increases, so the slope gets steeper.
- As the x values get more spread out, σ_x increases, so the slope gets shallower.

Interpreting the intercept

 $140 +$ 120 \bullet Minutes 100 80 $60 \cdot$ $\overline{7}$ 10 11 6 8 9 Home Departure Time (AM)

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

- $w_0^*=\bar{y}-w_1^*\bar{x}$
- What are the units of the intercept?

• What is the value of $H^*(\bar x)?$

Answer at practicaldsc.org/q

We fit a regression line to predict commute times given departure hour. Then, we add 75 minutes to all commute times in our dataset. What happens to the resulting regression line?

- A. Slope increases, intercept increases.
- B. Slope decreases, intercept increases.
- C. Slope stays the same, intercept increases.
- D. Slope stays the same, intercept stays the same.

Answer at practicaldsc.org/q

Consider a dataset with just two points, $(2, 5)$ and $(4, 15)$. Suppose we want to fit a linear hypothesis function to this dataset using squared loss. What are the values of w_0^* and w_1^* that minimize empirical risk?

- A. $w_0^* = 2, w_1^* = 5$
- B. $w_0^* = 3, w_1^* = 10$
- C. $w_0^* = -2$, $w_1^* = 5$
- D. $w_0^* = -5$, $w_1^* = 5$

Connections to related models

Answer at practicaldsc.org/q

Suppose we chose the model $H(x) = w_1 x$ and squared loss. What is the optimal model parameter, w_1^* ?

\n- A.
$$
\frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}
$$
\n- B.
$$
\frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}
$$
\n

\n- $$
\mathsf{C}.\frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}
$$
\n- $\mathsf{D}.\frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i}$
\n

Exercise

Suppose we chose the model $H(x) = w_1 x$ and squared loss.

What is the optimal model parameter, w_1^* ?

Exercise

Suppose we choose the model $H(x) = w_0$ and squared loss.

What is the optimal model parameter, w_0^* ?

Comparing mean squared errors

- With both:
	- $\circ\,$ the constant model, $H(x) = h$, and
	- \circ the simple linear regression model, $H(x) = w_0 + w_1 x$,

when we chose squared loss, we minimized mean squared error to find optimal parameters:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n}\sum_{i=1}^n\left(y_i-H(x_i)\right)^2
$$

Which model minimizes mean squared error more?

Comparing mean squared errors

$$
\text{MSE} = \frac{1}{n} \sum_{i=1}^n \left(y_i - H(x_i)\right)^2
$$

- The MSE of the best simple linear regression model is ≈ 97 .
- The MSE of the best constant model is ≈ 167 .
- The simple linear regression model is a more flexible version of the constant model.

Regression and linear algebra

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
	- Example: Predicting commute times using departure hour and the day of the month.
- Thinking about linear regression in terms of matrices and vectors will allow us to find hypothesis functions that:
	- Use multiple features (input variables).

 $\circ~$ Are non-linear in the features, e.g. $H(x) = w_0 + w_1 x + w_2 x^2.$

Simple linear regression, revisited

- $\bullet\,$ Model: $H(x) = w_0 + w_1 x.$
- Loss function: $(y_i-H(x_i))^2$.
- To find w_0^* and w_1^* , we minimized empirical risk, i.e. average loss:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n}\sum_{i=1}^n\left(y_i-H(x_i)\right)^2
$$

• Observation: $R_{sq}(w_0, w_1)$ kind of looks like the formula for the norm of a vector,

$$
\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}.
$$

Regression and linear algebra

Let's define a few new terms:

- The observation vector is the vector $\vec{y} \in \mathbb{R}^n$. This is the vector of observed "actual values".
- $\bullet\,$ The <code>hypothesis</code> vector is the vector $\vec{h}\in\mathbb{R}^n$ with components $H(x_i).$ This is the vector of predicted values.
- The error vector is the vector $\vec{e} \in \mathbb{R}^n$ with components:

$$
e_i = y_i - H(x_i) \,
$$

Example

Consider
$$
H(x) = 2 + \frac{1}{2}x
$$
.
\n $\vec{y} = \vec{h}$
\n $\vec{e} = \vec{y} - \vec{h} =$
\n $\vec{e} = \vec{y} - \vec{h}$
\n $R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$
\n $=$

 $\vec{h} =$

Regression and linear algebra

Let's define a few new terms:

- The observation vector is the vector $\vec{y} \in \mathbb{R}^n$. This is the vector of observed "actual values".
- $\bullet\,$ The <code>hypothesis</code> vector is the vector $\vec{h}\in\mathbb{R}^n$ with components $H(x_i).$ This is the vector of predicted values.
- The error vector is the vector $\vec{e} \in \mathbb{R}^n$ with components:

$$
e_i = y_i - H(x_i) \vert
$$

• Key idea: We can rewrite the mean squared error of H as:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n}\sum_{i=1}^n\left(y_i-H(x_i)\right)^2=\frac{1}{n}\|\vec e\|^2=\frac{1}{n}\|\vec y-\vec h\|^2
$$

The hypothesis vector

- $\bullet\,$ The <code>hypothesis</code> vector is the vector $\vec{h}\in\mathbb{R}^n$ with components $H(x_i).$ This is the vector of predicted values.
- $\bullet\,$ For the linear hypothesis function $H(x)=w_0+w_1x$, the hypothesis vector can be written:

$$
\vec{h} = \begin{bmatrix} w_0 + w_1x_1 \\ w_0 + w_1x_2 \\ \vdots \\ w_0 + w_1x_n \end{bmatrix} =
$$

Rewriting the mean squared error

• Define the design matrix $X \in \mathbb{R}^{n \times 2}$ as:

$$
X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}_\mathsf{I}
$$

- Define the **parameter vector** $\vec{w} \in \mathbb{R}^2$ to be $\vec{w} = \begin{bmatrix} w_0 \ w_1 \end{bmatrix}$.
- Then, $\vec{h} = \overrightarrow{Xw}$, so the mean squared error becomes:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n}\|\vec{y}-\vec{h}\|^2\implies \boxed{R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\vec{y}-X\vec{w}\|^2}
$$

Minimizing mean squared error, again

• To find the optimal model parameters for simple linear regression, w_0^* and w_1^* , we previously minimized:

$$
R_{\rm sq}(w_0,w_1) = \frac{1}{n}\sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2
$$

• Now that we've reframed the simple linear regression problem in terms of linear algebra, we can find w_0^* and w_1^* by finding the $\vec{w}^* = \begin{bmatrix} w_0^* \ w_1^* \end{bmatrix}$ that minimizes:

$$
\boxed{ R_{\rm sq}(\vec{w}) = \frac{1}{n}\|\vec{y} - X\vec{w}\|^2}
$$

• Do we already know the \vec{w}^* that minimizes $R_{\rm{sa}}(\vec{w})$?

Minimizing mean squared error, using projections?

- \overrightarrow{X} and \overrightarrow{y} are fixed: they come from our data.
- Our goal is to pick the \vec{w}^* that minimizes:

$$
R_{\mathrm{sq}}(\vec{w}) = \frac{1}{n}\|\vec{y} - X\vec{w}\|^2
$$

• This is equivalent to picking the \vec{w}^* that minimizes:

 $\|\vec{y} - X\vec{w}\|^2$

- This is equivalent to finding the w_0^* and w_1^* so that $\overrightarrow{X} \overrightarrow{w}^*$ is as "close" to \overrightarrow{y} as possible.
- Solution: Find the orthogonal projection of \vec{y} onto $\text{span}(X)!$
- We already did this in LARDS, [Section](https://practicaldsc.org/lin-alg/#projecting-onto-the-span-of-multiple-vectors-again) 8!

An optimization problem we've seen before

 $\bullet\,$ The optimal parameter vector, $\vec{w}^* = \left[w_0^* \quad w_1^*\right]^T$, is the one that minimizes:

$$
R_{\mathrm{sq}}(\vec{w}) = \frac{1}{n}\|\vec{y} - X\vec{w}\|^2
$$

• In LARDS Section 8 (and your linear algebra class), we showed that the \vec{w}^* that minimizes the length of the error vector, $\|\vec{e}\| = \|\vec{y} - X\vec{w}\|$, is the one that satisifes the normal equations:

$$
X^TX\vec w^*=X^T\vec y
$$

• The minimizer of $\|\vec{e}\|$ is the same as the minimizer of $R_{\rm{sq}}(\vec{w})$.

$$
\frac{1}{n}\|\vec{e}\|^2 = \frac{1}{n}\|\vec{y} - X\vec{w}\|^2
$$

• Key idea: The \vec{w}^* that solves the normal equations also minimizes $R_{\rm{sq}}(\vec{w})!$

The normal equations

The normal equations are the system of 2 equations and 2 unknowns defined by:

$$
\boxed{X^T X \vec{w}^* = X^T \vec{y}}
$$

- Why are they called the normal equations?
- If $X^T X$ is invertible, there is a unique solution to the normal equations:

 $\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$

• If $X^T X$ is not invertible, then there are infinitely many solutions to the normal equations. We will explore this idea as the semester progresses.

The optimal parameter vector, \vec{w}^*

- To find the optimal model parameters for simple linear regression, w_0^* and w_1^* , we previously minimized $R_{\rm sq}(w_0,w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$.
	- We found, using calculus, that:

$$
\bullet\ \boxed{w_1^*=\frac{\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})}{\sum_{i=1}^n(x_i-\bar{x})^2}=r\frac{\sigma_y}{\sigma_x}}.
$$

Another way of finding optimal model parameters for simple linear regression is to find the \vec{w}^* that minimizes $R_{\text{sq}}(\vec{w}) = \frac{1}{n} \|\vec{y} - X\vec{w}\|^2$.

 $\phi \circ \tau$ he minimizer, if X^TX is invertible, is the vector $\left| \vec{w}^* - (X^TX)^{-1}X^T\vec{y} \right|$

• These formulas are equivalent!

Code demo

- To give us a break from math, we'll switch to a notebook, showing that both formulas that is, (1) the formulas for w_1^* and w_0^* we found using calculus, and (2) the formula for \vec{w}^* we found using linear algebra – give the same results.
	- \circ You'll prove this in Homework 8 \bullet .
- The supplementary notebook is posted in the usual place on [GitHub](https://github.com/practicaldsc/fa24) and the [course](https://practicaldsc.org/resources/lectures/lec16/lec16-filled.html) [website.](https://practicaldsc.org/resources/lectures/lec16/lec16-filled.html)
- Then, we'll use our new linear algebraic formulation of regression to incorporate multiple features in our prediction process.

Summary: Regression and linear algebra

 $\bullet\,$ Define the **design matrix** $X\in\mathbb{R}^{n\times 2}$ **, observation vector** $\vec{y}\in\mathbb{R}^{n}$ **, and parameter** vector $\vec{w} \in \mathbb{R}^2$ as:

$$
X=\begin{bmatrix}1&x_1\\1&x_2\\ \vdots&\vdots\\1&x_n\end{bmatrix}\hspace{5mm} \vec{y}=\begin{bmatrix}y_1\\y_2\\ \vdots\\y_n\end{bmatrix}\hspace{5mm} \vec{w}=\begin{bmatrix}w_0\\w_1\end{bmatrix}
$$

 $\bullet\,$ How do we make the hypothesis vector, $\vec h=X\vec w$, as close to $\vec y$ as possible? Use the solution to the normal equations, \vec{w}^* :

$$
\vec{w}^* = (X^TX)^{-1}X^T\vec{y}
$$

 $\bullet\,$ We chose \vec{w}^* so that $\vec{h}^* = X \vec{w}^*$ is the projection of \vec{y} onto the span of the columns of the design matrix, \overline{X} . The set of the set of 37

Multiple linear regression

So far, we've fit simple linear regression models, which use only one feature ('departure_hour') for making predictions.

Incorporating multiple features

• In the context of the commute times dataset, the simple linear regression model we fit was of the form:

> pred. commute $=$ H (departure hour) $w_0 + w_1 \cdot$ departure hour

• Now, we'll try and fit a linear regression model of the form:

pred. commute $=$ H (departure hour) $w_0 + w_1 \cdot$ departure hour $w_2 \cdot$ day of month

- Linear regression with multiple features is called multiple linear regression.
- How do we find w_0^*, w_1^* , and w_2^* ?

Geometric interpretation

The hypothesis function:

```
H(\text{departure hour}) = w_0 + w_1 \cdot \text{departure hour}
```
looks like a line in 2D.

- Questions:
	- \circ How many dimensions do we need to graph the hypothesis function: $H(\text{departure hour}) = w_0 + w_1 \cdot \text{departure hour} + w_2 \cdot \text{day of month}$
	- What is the shape of the hypothesis function?

Commute Time vs. Departure Hour and Day of Month

Our new hypothesis function is a plane in 3D!

Our goal is to find the plane of best fit that pierces through the cloud of points.

The hypothesis vector

When our hypothesis function is of the form:

 $H(\text{departure hour}) = w_0 + w_1 \cdot \text{departure hour} + w_2 \cdot \text{day of month}$ the hypothesis vector $\vec{h} \in \mathbb{R}^n$ can be written as:

$$
\vec{h} = \begin{bmatrix} H(\text{departure hour}_1, \text{day}_1) \\ H(\text{departure hour}_2, \text{day}_2) \\ \cdots \\ H(\text{departure hour}_n, \text{day}_n) \end{bmatrix} = \begin{bmatrix} 1 & \text{ departure hour}_1 & \text{day}_1 \\ 1 & \text{ departure hour}_2 & \text{day}_2 \\ \cdots & \cdots & \cdots \\ 1 & \text{ departure hour}_n & \text{day}_n \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}
$$

Finding the optimal parameters

 $\bullet~$ To find the optimal parameter vector, \vec{w}^* , we can use the **design matrix** $\bm{X} \in \mathbb{R}^{n \times 3}$ and observation vector $\vec{y} \in \mathbb{R}^n$:

$$
X = \begin{bmatrix} 1 & \text{ departure hour}_1 & \text{day}_1 \\ 1 & \text{ departure hour}_2 & \text{day}_2 \\ \cdots & \cdots & \cdots \\ 1 & \text{ departure hour}_n & \text{day}_n \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} \text{commute time}_1 \\ \text{commute time}_2 \\ \vdots \\ \text{commute time}_n \end{bmatrix}
$$

Then, all we need to do is solve the normal equations once again:

$$
X^TX\vec w^*=X^T\vec y
$$

If $X^T X$ is invertible, we know the solution is:

$$
\vec{w}^* = (X^T X)^{-1} X^T \bar{y}
$$

Code demo

- Let's switch back to the notebook and use what we've just learned to find the $w_0^*, w_1^*,$ and w_2^* that minimize mean squared error for the following hypothesis function: $H(\text{departure hour}) = w_0 + w_1 \cdot \text{departure hour} + w_2 \cdot \text{day of month}$
- The supplementary notebook is posted in the usual place on [GitHub](https://github.com/practicaldsc/fa24) and the [course](https://practicaldsc.org/resources/lectures/lec16/lec16-filled.html) [website.](https://practicaldsc.org/resources/lectures/lec16/lec16-filled.html)
- Next class, we'll present a more general formulation of multiple linear regression and see how it can be used to incorporate (many) more sophisticated features.
- Then, we'll start discussing the nature of **how we choose which features to use**, and why more isn't always better.