Lecture 15

Simple Linear Regression

1

EECS 398-003: Practical Data Science, Fall 2024

practicaldsc.org • github.com/practicaldsc/fa24

Announcements 🤜

- Homework 7 is due on **Thursday**.
- We've released a Grade Report on Gradescope that has your current overall score in the class, scores on all assignments, and slip day usage so far.
 See #232 on Ed for more details.
- Some updates to the **Syllabus**:
 - You now have 8 slip days instead of 6!
 - The final homework, called the Portfolio Homework, will be an open-ended investigation using the tools from both halves of the semester. Details to come.
 - You'll end up making a website!
 - You can work with a partner, but can't drop it or use slip days on it.
- The IA application is out for next semester! Please consider applying, and let me know if you're interested.

Agenda

- Recap: Models and loss functions.
- Towards simple linear regression.
- Minimizing mean squared error for the simple linear model.
- Correlation.
- Interpreting the formulas.
- Connections to related models.

Recap: Models and loss functions

Overview

- We started by introducing the idea of a hypothesis function, H(x).
- We looked at two possible models:
 - $\circ\;$ The constant model, H(x)=h.
 - $\circ\;$ The simple linear regression model, $H(x)=w_0+w_1x.$
- We decided to find the best constant prediction to use for predicting commute times, in minutes.

Recap: Mean squared error

• Let's suppose we have just a smaller dataset of just five historical commute times in minutes.

$$y_1 = 72$$
 $y_2 = 90$ $y_3 = 61$ $y_4 = 85$ $y_5 = 92$

• The mean squared error of the constant prediction h is:

$$R_{
m sq}(h) = rac{1}{5}ig((72-h)^2+(90-h)^2+(61-h)^2+(85-h)^2+(92-h)^2ig)$$

• For example, if we predict h = 100, then:

$$egin{aligned} R_{
m sq}(100) &= rac{1}{5}ig((72-100)^2+(90-100)^2+(61-100)^2+(85-100)^2+(92-100)^2ig)\ &= igsidesimes 538.8 \end{aligned}$$

• We can pick any h as a prediction, but the smaller $R_{
m sq}(h)$ is, the better h is!

The modeling recipe

- We've now made two full passes through our modeling recipe.
 - 1. Choose a model.
 - 2. Choose a loss function.
 - 3. Minimize average loss to find optimal model parameters.

Visualizing average loss

- Let's use the same example dataset, 72, 90, 61, 85, 92.
- Below are the graphs of:
 - Mean squared error, the average of squared loss across our dataset.
 - Mean absolute error, the average of absolute loss across our dataset.

Empirical risk minimization

- The formal name for the process of minimizing average loss is **empirical risk minimization**.
- Another name for "average loss" is empirical risk.
- When we use the squared loss function, $L_{sq}(y_i, h) = (y_i h)^2$, the corresponding empirical risk is mean squared error:

$$R_{ ext{sq}}(h) = rac{1}{n}\sum_{i=1}^n (y_i-h)^2 \implies h^* = ext{Mean}(y_1,y_2,\ldots,y_n)$$

• When we use the absolute loss function, $L_{abs}(y_i, h) = |y_i - h|$, the corresponding empirical risk is mean absolute error:

$$R_{ ext{abs}}(h) = rac{1}{n}\sum_{i=1}^n |y_i-h| \implies h^* = ext{Median}(y_1,y_2,\ldots,y_n)$$

Empirical risk minimization, in general

• Key idea: If L is any loss function, and H is any hypothesis function, the corresponding empirical risk is:

$$R(H)=rac{1}{n}\sum_{i=1}^n L(y_i,H(x_i))$$

- In Homework 7 (and last week's discussion), you saw several examples in which:
 - \circ You were given a new loss function L.
 - $\circ~$ You had to find the optimal parameter h^* for the constant model $H(x_i)=h.$

Choosing a loss function

- For the constant model H(x) = h, the **mean** minimizes mean **squared** error.
- For the constant model H(x) = h, the **median** minimizes mean **absolute** error.
- In practice, squared loss is the more common choice, as it's easily differentiable.

• But how does our choice of loss function impact the resulting optimal prediction?

Comparing the mean and median

• Consider our example dataset of 5 commute times.

$$y_1 = 72$$
 $y_2 = 90$ $y_3 = 61$ $y_4 = 85$ $y_5 = 92$

- As of now, the median is 85 and the mean is 80.
- What if we add 200 to the largest commute time, 92?

$$y_1 = 72$$
 $y_2 = 90$ $y_3 = 61$ $y_4 = 85$ $y_5 = 292$

Now, the median is

but the mean is

İ

• **Key idea**: The mean is quite **sensitive** to outliers. But why?

Outliers

• Below, $|y_4-h|$ is 10 times as big as $|y_3-h|$, but $(y_4-h)^2$ is 100 times $(y_3-h)^2$.

 The result is that the mean is "pulled" in the direction of outliers, relative to the median.

• As a result, we say the **median** – and absolute loss more generally – is **robust**.

Distribution of Commuting Time

Example: Income inequality

Average vs median income

Median and mean income between 2012 and 2014 in selected OECD countries, in USD; weighted by the currencies' respective <u>purchasing power</u> (PPP).

Average income in USD Median income

Summary: Choosing a loss function

• Key idea: Different loss functions lead to different best predictions, h^* !

Loss	Minimizer	Always Unique?	Robust to Outliers?	Differentiable?
$L_{ m sq}(y_i,h)=(y_i-h)^2$	mean	yes 🗸	no 🗙	yes 🗸
$L_{ m abs}(y_i,h) = y_i-h $	median	no 🗙	yes 🗸	no 🗙
$L_{0,1}(y_i,h)=egin{cases} 0 & y_i=h\ 1 & y_i eq h \end{cases}$	mode	no 🗙	yes 🗸	no 🗙
$L_\infty(y_i,h)$ See HW 7, Question 5.	???	yes 🗸	no 🗙	no 🗙

• The optimal predictions, h^* , are all **summary statistics** that measure the **center** of the dataset in different ways.

Towards simple linear regression

Recap: Hypothesis functions and parameters

- A hypothesis function, H, takes in an x as input and returns a predicted y.
- **Parameters** define the relationship between the input and output of a hypothesis function.
- Example: The simple linear regression model, $H(x) = w_0 + w_1 x$, has two parameters: w_0 and w_1 .

The modeling recipe

1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.

Minimizing mean squared error for the simple linear model

- We'll choose squared loss, since it's the easiest to minimize.
- Our goal, then, is to find the linear hypothesis function $H^*(x)$ that minimizes empirical risk:

$$R_{ ext{sq}}(H) = rac{1}{n}\sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

• Since linear hypothesis functions are of the form $H(x)=w_0+w_1x$, we can re-write $R_{
m sq}$ as a function of w_0 and w_1 :

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i))^2
ight)$$

- How do we find the parameters w_0^* and w_1^* that minimize $R_{
m sq}(w_0,w_1)$?

Loss surface

For the constant model, the graph of $R_{ m sq}(h)$ looked like a parabola.

What does the graph of $R_{
m sq}(w_0,w_1)$ look like for the simple linear regression model?

Minimizing mean squared error for the simple linear model

Minimizing multivariate functions

• Our goal is to find the parameters w_0^* and w_1^* that minimize mean squared error:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2$$

- $R_{
 m sq}$ is a function of two variables: w_0 and w_1 .
- To minimize a function of multiple variables:
 - Take partial derivatives with respect to each variable.
 - Set all partial derivatives to 0 and solve the resulting system of equations.
 - Ensure that you've found a minimum, rather than a maximum or saddle point (using the second derivative test for multivariate functions).
- To save time, we won't do the derivation live in class, but you are responsible for it!
 Here's a video of me walking through it.

Example

Find the point (x, y, z) at which the following function is minimized.

$$f(x,y) = x^2 - 8x + y^2 + 6y - 7$$

Minimizing mean squared error

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2$$

To find the w_0^* and w_1^* that minimize $R_{
m sq}(w_0,w_1)$, we'll:

1. Find
$$\frac{\partial R_{sq}}{\partial w_0}$$
 and set it equal to 0.
2. Find $\frac{\partial R_{sq}}{\partial w_1}$ and set it equal to 0.

3. Solve the resulting system of equations.

$$egin{aligned} R_{ ext{sq}}(w_0,w_1) &= rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2 \ &rac{\partial R_{ ext{sq}}}{\partial w_0} &= \end{aligned}$$

$$egin{aligned} R_{ ext{sq}}(w_0,w_1) &= rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2 \ &rac{\partial R_{ ext{sq}}}{\partial w_1} &= \end{aligned}$$

Strategy

• We have a system of two equations and two unknowns (w_0 and w_1):

$$-rac{2}{n}\sum_{i=1}^n \left(y_i-(w_0+w_1x_i)
ight)=0 \qquad -rac{2}{n}\sum_{i=1}^n \left(y_i-(w_0+w_1x_i)
ight)\!x_i=0$$

• To proceed, we'll:

1. Solve for w_0 in the first equation.

The result becomes w_0^* , because it's the "best intercept."

2. Plug w_0^* into the second equation and solve for w_1 . The result becomes w_1^* , because it's the "best slope."

Solving for w_0^*

$$-rac{2}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight) = 0$$

Solving for w_1^st

$$-rac{2}{n}\sum_{i=1}^n{(y_i-(w_0+w_1x_i))x_i=0}$$

Least squares solutions

• We've found that the values w_0^* and w_1^* that minimize $R_{
m sq}$ are:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (y_i - ar{y}) x_i}{\displaystyle\sum_{i=1}^n (x_i - ar{x}) x_i} \qquad \qquad w_0^* = ar{y} - w_1^* ar{x}$$

where:

$$ar{x}=rac{1}{n}\sum_{i=1}^n x_i \qquad \qquad ar{y}=rac{1}{n}\sum_{i=1}^n y_i$$

• These formulas work, but let's re-write w_1^* to be a little more symmetric.

An equivalent formula for w_1^st

• Claim:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (y_i - ar{y}) x_i}{\displaystyle\sum_{i=1}^n (x_i - ar{x}) x_i} = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x}) (y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x}) x_i}$$

• Proof:

Least squares solutions

• The least squares solutions for the intercept w_0 and slope w_1 are:

$$egin{aligned} & w_1^* = rac{\sum\limits_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sum\limits_{i=1}^n (x_i - ar{x})^2} & w_0^* = ar{y} - w_1^*ar{x} \end{aligned}$$

- We say w_0^* and w_1^* are **optimal parameters**, and the resulting line is called the **regression line**.
- The process of minimizing empirical risk to find optimal parameters is also called "fitting to the data."
- To make predictions about the future, we use $igg| H^*(x) = w_0^* + w_1^* x igg|$

Code demo

• Let's test these formulas out in code!

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

• The supplementary notebook is posted in the usual place on GitHub and the course website.

Correlation

Quantifying patterns in scatter plots

- The correlation coefficient, r, is a measure of the strength of the linear association of two variables, x and y.
- Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
- It ranges between -1 and 1.

The correlation coefficient

- The correlation coefficient, r, is defined as the average of the product of x and y, when both are standardized.
- Let σ_x be the standard deviation of the x_i s, and \bar{x} be the mean of the x_i s.
- x_i standardized is $rac{x_i-ar{x}}{\sigma_x}$.
- The correlation coefficient, then, is:

$$r = rac{1}{n}\sum_{i=1}^n \left(rac{x_i-ar{x}}{\sigma_x}
ight) \left(rac{y_i-ar{y}}{\sigma_y}
ight)$$

The correlation coefficient, visualized

Another way to express w_1^*

• It turns out that w_1^* , the optimal slope for the linear hypothesis function when using squared loss (i.e. the regression line), can be written in terms of r!

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2} = r rac{\sigma_y}{\sigma_x}$$

- It's not surprising that r is related to w_1^* , since r is a measure of linear association.
- Concise way of writing w_0^* and w_1^* :

$$w_1^* = r rac{\sigma_y}{\sigma_x} \qquad w_0^* = ar{y} - w_1^* ar{x}$$

Proof that
$$w_1^* = r rac{\sigma_y}{\sigma_x}$$

Code demo

• Let's test these new formulas out in code and see if they match the earlier formulas!

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

• The supplementary notebook is posted in the usual place on GitHub and the course website.

Interpreting the formulas

Causality

• Can we conclude that leaving later **causes** you to get to school earlier?

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

Interpreting the slope

$$w_1^* = r rac{\sigma_y}{\sigma_x}$$

- The units of the slope are **units of** *y* **per units of** *x*.
- In our commute times example, in $H^*(x) = 142.25 8.19x$, our predicted commute time decreases by 8.19 minutes per hour.

Interpreting the slope

- Since $\sigma_x \geq 0$ and $\sigma_y \geq 0$, the slope's sign is r's sign.
- As the y values get more spread out, σ_y increases, so the slope gets steeper.
- As the x values get more spread out, σ_x increases, so the slope gets shallower.

Interpreting the intercept

 $w_0^*=ar{y}-w_1^*ar{x}$

• What are the units of the intercept?

• What is the value of $H^*(ar x)$?

Answer at practicaldsc.org/q

We fit a regression line to predict commute times given departure hour. Then, we add 75 minutes to all commute times in our dataset. What happens to the resulting regression line?

- A. Slope increases, intercept increases.
- B. Slope decreases, intercept increases.
- C. Slope stays the same, intercept increases.
- D. Slope stays the same, intercept stays the same.

Answer at practicaldsc.org/q

Consider a dataset with just two points, (2, 5) and (4, 15). Suppose we want to fit a linear hypothesis function to this dataset using squared loss. What are the values of w_0^* and w_1^* that minimize empirical risk?

- A. $w_0^*=2$, $w_1^*=5$
- B. $w_0^*=3$, $w_1^*=10$
- + C. $w_0^*=-2$, $w_1^*=5$
- + D. $w_0^*=-5$, $w_1^*=5$

Connections to related models

Answer at practicaldsc.org/q

Suppose we chose the model $H(x) = w_1 x$ and squared loss. What is the optimal model parameter, w_1^* ?

• A.
$$rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^n (x_i - ar{x})^2}$$

• B. $rac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}$

• C.
$$rac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}$$

• D. $rac{\sum_{i=1}^n y_i}{\sum_{i=1}^n x_i}$

Exercise

Suppose we chose the model $H(x) = w_1 x$ and squared loss.

What is the optimal model parameter, w_1^st ?

Exercise

Suppose we choose the model $H(x) = w_0$ and squared loss.

What is the optimal model parameter, w_0^st ?

Comparing mean squared errors

- With both:
 - $\circ\,$ the constant model, H(x)=h, and
 - $\circ\,$ the simple linear regression model, $H(x)=w_0+w_1x$,

when we chose squared loss, we minimized mean squared error to find optimal parameters:

$$R_{ ext{sq}}(H) = rac{1}{n}\sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

• Which model minimizes mean squared error more?

Comparing mean squared errors

$$ext{MSE} = rac{1}{n}\sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

- The MSE of the best simple linear regression model is ≈ 97 .
- The MSE of the best constant model is pprox 167.
- The simple linear regression model is a more flexible version of the constant model.