Lecture 14

Introduction to Modeling

 $\overline{}$

EECS 398-003: Practical Data Science, Fall 2024

practicaldsc.org · github.com/practicaldsc/fa24

Announcements

- Midterm Exam scores are available on Gradescope. Solutions are available at study.practicaldsc.org/fa24-midterm, and regrade requests are due tomorrow night.
	- If you want to meet with Suraj (or anyone else) to walk through your Midterm Exam and talk about study strategies moving forward, email us!
- Homework 6 is due tonight. See #180 on Ed for a clarification. If you get rate limited in Question 4, you can change your model from llama-8b-8192 to

another model listed here.

Agenda

- Course overview.
- Machine learning and models.
- The constant model.
- Minimizing mean squared error using calculus.
- Another loss function.

The next few lectures (and next homework!) will be primarily math-based.

- For these lectures, we'll post blank slides as a PDF before class, and annotated slides after class.
- If there are any code demos, we'll post those before class, too.
- Come to discussion tomorrow for math review and practice!

Course overview

EECS 398, Part 1

- In Lecture 1, we said the first half of this course would be about data wrangling.
	- Week 1: Python and Jupyter Notebooks.
	- Weeks 2-3: numpy, pandas, and Exploratory Data Analysis.
	- Weeks 4-5: Missing Data; Web Scraping and APIs.
	- Weeks 5-6: Text Processing.
	- \circ Week 7: Midterm Exam.
- You're proficient in working with messy data using industry-standard tools.
- But, you've also developed an understanding of how processes work under the hood.
	- How many rows result from an inner join of these two DataFrames?
	- \circ How do we quantify how important a term is to a document?
	- How do we describe a particular class of strings using mathematical notation?

The data science lifecycle.

EECS 398, Part 2

- The second half of this course is about applied machine learning.
	- Weeks 8-10: Linear Regression through Linear Algebra.
	- Weeks 11-12: Generalization, Regularization, and Cross-Validation.
	- Weeks 12-14: Gradient Descent and Logistic Regression.
	- Weeks 15-16: Unsupervised Learning, Final Exam.
- about future data given some data from the past.
- you understand how they actually work.

The tools may change in the future, but the ideas won't!

so we'll do math \mathbf{h} , \mathbf{h} , \mathbf{h} but with a purpose **!**

Machine learning and models

Machine learning is about **automatically** learning patterns from data.

without "hard-coding"

Example: Handwritten digit classification

Humans are good at understanding handwriting, but how do we get computers to understand handwriting?

Example: ChatGPT

How did ChatGPT know how to answer Question 7 from the Fall 2024 Midterm?

A biased coin flips heads with probability 0.8. I flip it 100 times. What's the probability of seeing 65 heads?

I found a coin on the ground, and don't know if it's fair.

I flip it 100 times and see 65 heads. What is the most likely bias of the coin?

EECS 203

You might be starting to look for off-campus apartments for next year, none of which are in your price range.

> time of departure_hour minutes date **day** $\mathbf 0$ 5/22/2023 8.450000 63.0 Mon 7.950000 9/18/2023 75.0 1 Mon 10/17/2023 $2¹$ **Tue** 10.466667 59.0 3 11/28/2023 8.900000 89.0 **Tue** 8.083333/ 69.0 $\overline{\mathbf{4}}$ 2/15/2024 Thu $8AM + 457.$ on nour
":25 ish \bullet \bullet \bullet You decide to live with your parents in Detroit and commute. You keep track of how long it takes you to get to school each day.

Distribution of Commuting Time

Goal: Predict your commute time, i.e. how long it will take to get to school.

singular : "datum"

w data were generated.

Notation

 \bullet x : "input", "independent variable", or "feature".

response", "dependent y : variable", or "target".

- We use x to predict y .
- The *i*th observation is \bullet denoted (x_i, y_i) .

- **Hypothesis functions and parameters**

 A hypothesis function *H*, takes in an *x* as input and returns a predicted *y*.

 Parameters define the relationship between the input and output of a hypothesis
- **parameters**
 \overline{z}
as in an x as input anship between the function.

used for making

predictions !

• Example: The constant model, $H(x) = h$, has one parameter: h .

Hypothesis functions and parameters

- A hypothesis function, H , takes in an x as input and returns a predicted y .
- Parameters define the relationship between the input and output of a hypothesis function.
- Example: The simple linear regression model, $H(x) = w_0 + w_1x$, has two parameters: w_0 and w_1 . s lope $=$ m $x+b$ $H(x) = -14 + 12x$ $H(x) = 170 - 11x$ 140 130- $120 120$ atencent $110 -$ 100 100 90 e.g. leave at 10 AM
predicted commute
= H (10) = 170 - 11 - 10 = 160 80 80 $70 60 60 50 40 -$ 12 10

24

Answer at practicaldsc.org/q

What questions do you have?

The constant model

The constant model

A concrete example

• Let's suppose we have just a smaller dataset of just five historical commute times in minutes.

$$
y_1 = 72y_2 = 90y_3 = 61y_4 = 85y_5 = 92
$$

• Given this data, can you come up with a prediction for your future commute time? ideas mentioned in becture: How? mean, median, most recent, min tryax

Some common approaches

 \bullet The mean:

$$
\frac{1}{5}(72+90+61+85+92)=\boxed{80}
$$

 \bullet The median:

$$
61 \quad 72 \quad \boxed{85} \quad 90 \quad 92
$$

• Both of these are familiar summary statistics.

Summary statistics summarize a collection of numbers with a single number, i.e. they result from an aggregation.

• But which one is better? Is there a "best" prediction we can make?

The cost of making predictions

- A loss function quantifies how bad a prediction is for a single data point.
	- \circ If our prediction is close to the actual value, we should have low loss.
	-
- lue, we sh
ference b
 $\overbrace{H(x_i)}^{H(x_i)}$
lutes. we should
a should
a should be a should be a should be about that the same that the same that the same that the same that the should be a difference bety commute time $\sqrt{ }$ values.
- - $80 75 = 5$
	- $80 75 = 5$
 $80 72 = 8$ worse prediction, more loss!
	- $80 100 = -20$ issue! some Θ , $50me$

↳ predicted commute time

Squared loss

• One loss function is squared loss, L_{sq} , which computes $(\text{actual}-\text{predicted})^2$.

$$
L_{\text{sq}}(y_i, H(x_i)) = (y_i - H(x_i))^2
$$

= **(predicted - actual)**
symmetry

• Note that for the constant model, $H(x_i)=h$, so we can simplify this to:

$$
L_{\rm sq}(y_i,h)=(y_i-h)^2
$$

• Squared loss is not the only loss function that exists!

Soon, we'll learn about absolute loss. Different loss functions have different pros and cons.

A concrete example, revisited

again our smaller dataset of just five historical commute times in m
 $\rightarrow (72-85)$ = 169 Goal : Find a $s(72-05) = 167$ Order that a single
 $\rightarrow (90-85)$ = 25 number that describes The $y_3=61$ i quality of $\frac{1}{5}$ $y_4=85$ $y_5=92$ $y_5 = 92$
• Suppose we predict the median, $h = 85$. What is the squared loss of 85 for each data

point?

Averaging squared losses

- We'd like a single number that describes the quality of our predictions across our entire dataset. One way to compute this is as the average of the squared losses.
- For the median, $h = 85$:

$$
\frac{1}{5} \big((72-85)^2 + (90-85)^2 + (61-85)^2 + (85-85)^2 + (92-85)^2 \big) = \fbox{163.8}
$$

• For the mean, $h = 80$:

 low loss $=$ $(5)^2$ = $\overline{163.8}$
 $(0)^2$ = $\overline{138.8}$

good

• Which prediction is better? Could there be an even better prediction?

80 is better, because its average squard loss is lower!

Mean squared error

• Another term for **average squared loss** is **mean squared error (MSE).**

 low loss = good!

whole dataset • The mean squared error on our smaller dataset for any prediction h is of the form:

$$
R_{\rm sq}(h) = \frac{1}{5} \big((72 - h)^2 + (90 - h)^2 + (61 - h)^2 + (85 - h)^2 + (92 - h)^2 \big)
$$

 R stands for "risk", as in "empirical risk." We'll see this term again soon.

• For example, if we predict $h=100$, then:

$$
\begin{aligned} R_{\rm sq}(100) & = \frac{1}{5} \big((72-100)^2 + (90-100)^2 + (61-100)^2 + (85-100)^2 + (92-100)^2 \big) \\ & = \fbox{538.8} \end{aligned}
$$

• We can pick any h as a prediction, but the smaller $R_{\rm{sq}}(h)$ is, the better h is!

- L: loce for a single

- R: average

 $log s$

Activity

Answer at practicaldsc.org/q (use the free response box!)

 $(85-h)^2$ is a
parabola

centered C __

Mean squared error, in general

-
- Suppose we collect n commute
The mean squared error of the $R_{sq}(h)=\frac{1}{n}$ $\left[\left(q\right)\right]$ - μ)² + (yz⁻¹ $4) + ... + (y_{n} (y_2 - h)^2$ + + (gn-h)²
squared loss 2 squared loss for print ² for
1 **14** As a for-loop : total=0 4) for ⁱ in range (1, • Or, using summation notation:
 $R_{sg}(h)=\frac{1}{n}\sum_{i=1}^{n}(y_{i}-h)^{2}$ n+1) : int α in range α , β $total = total/n$

he best prediction
 $R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$ **only withown is h**!

• We want the best constant prediction, among all constant predictions h. **Chey're** data! The best prediction • The smaller $R_{sq}(h)$ is, the better h is.

- Goal: Find the h that minimizes $R_{\rm{sq}}(h)$. The resulting h will be called h^* .
- How do we find h^* ?

special \rightarrow best \rightarrow smallest MSE

Minimizing mean squared error using calculus

Minimizing using calculus

• We'd like to minimize:

$$
R_{\mathrm{sq}}(h)=\frac{1}{n}\sum_{i=1}^n(y_i-h)^2
$$

• In order to minimize $R_{\rm sq}(h)$, we:

1. take its derivative with respect to h_i

- 2. set it equal to 0,
- 3. solve for the resulting h^* , and
- 4. perform a second derivative test to ensure we found a minimum.

Step 0: The derivative of $(y_i-h)^2$

• Remember from calculus that:

$$
\circ \text{ if } c(x) = a(x) + b(x), \text{ then}
$$

$$
\circ \frac{d}{dx}c(x) = \frac{d}{dx}a(x) + \frac{d}{dx}b(x).
$$

- $\bullet\,$ This is relevant because $R_{\rm sq}(h)=\frac{1}{n}\sum_{i=1}^n(y_i-h)^2$ involves the sum of n individual terms, each of which involve h .
- $\bullet\,$ So, to take the derivative of $R_{\rm sq}(h)$, we'll first need to find the derivative of $(y_i-h)^2.$

$$
\frac{d}{dh}(y_i - h)^2 = 2(y_i - h) \frac{d}{dh}(y_i - h)
$$
\n
$$
= 2(y_i - h)(-1) = -2(y_i - h) = 2(h - y_i)
$$
\n
$$
= 2(y_i - h)(-1) = -2(y_i - h) = 2(h - y_i)
$$

Answer at practicaldsc.org/q

$$
R_{\mathrm{sq}}(h)=\frac{1}{n}\sum_{i=1}^n(y_i-h)^2
$$

Which of the following is $\frac{d}{dh}R_{\text{sq}}(h)$?

- \bullet A.O
- B. $\sum_{i=1}^n y_i$
- C. $\frac{1}{n} \sum_{i=1}^{n} (y_i h)$
- D. $\frac{2}{n} \sum_{i=1}^{n} (y_i h)$
- E. $-\frac{2}{n}\sum_{i=1}^{n}(y_i-h)$

Step 1: The derivative of $R_{\text{sq}}(h)$

$$
\frac{d}{dh}R_{sq}(h) = \frac{d}{dh}\left(\frac{1}{n}\sum_{i=1}^{n}(y_i - h)^2\right)
$$
\n
$$
= \frac{1}{n}\sum_{i=1}^{n}\frac{d}{dh}(g_i - h)^2 \qquad \text{thus, slides } ago!
$$
\n
$$
= \frac{1}{n}\sum_{i=1}^{n}(-2)(g_i - h)^2
$$

$$
\frac{d}{dh}R_{sq}(h)=-\frac{2}{n}\sum_{i=1}^{n}(y_{i}-h)
$$

Steps 2 and 3: Set to 0 and solve for the minimizer, h^*

G multip $-\frac{2}{n}\sum_{i=1}^{n}(y_{i}-h)=0$ 30 \leq Cy;-n, n h **Hi** $=$ Mean (v 43

Step 4: Second derivative test

The mean minimizes mean squared error!

• The problem we set out to solve was, find the h^* that minimizes:

$$
R_{\mathrm{sq}}(h)=\frac{1}{n}\sum_{i=1}^n(y_i-h)^2
$$

 \bullet The answer is:

$$
h^* = \text{Mean}(y_1, y_2, \ldots, y_n)
$$

- The best constant prediction, in terms of mean squared error, is always the mean.
- We call h^* our **optimal model parameter**, for when we use:
	- \circ the constant model, $H(x) = h$, and
	- $\circ\,$ the squared loss function, $L_{\rm sq}(y_i,h)=(y_i-h)^2.$

Aside: Notation

is:

• Another way of writing:

 h^* is the value of h that minimizes $\frac{1}{n}\sum_{i=1}^n (y_i - h)^2$ $h^* = \operatornamewithlimits{argmin}\limits_{h} \ \left(\frac{1}{n} \sum\limits_{i=1}^n (y_i - h)^2 \right)$ - "the agencent that minimizes"

• h^* is the solution to an optimization problem.

The modeling recipe

• We've implicitly introduced a three-step process for finding optimal model parameters (like h^*) that we can use for making predictions:

1. Choose a model.
\n
$$
H(x) = h
$$
 constant
\n2. Choose a loss function.
\n $L_{e_1}(y_i, h) = (y_i - h)$
\n3. Minimize average loss to find optimal model parameters.
\n Δ
\n Δ

recipe, and we'll see it repeatedly this semester!

Answer at practicaldsc.org/q

What questions do you have?

Another loss function

Another loss function

• We started by computing the error for each of our predictions, but ran into the issue that some errors were positive and some were negative.

$$
e_i = y_i - H(x_i)
$$

• The solution was to square the errors, so that all are non-negative. The resulting loss function is called squared loss.

$$
L_{\rm sq}(y_i,H(x_i))=(y_i-H(x_i))^2
$$

• Another loss function, which also measures how far $H(x_i)$ is from y_i , is absolute loss.

$$
L_{\rm abs}(y_i,H(x_i))=|y_i-H(x_i)|
$$

Absolute loss vs. squared loss

Mean absolute error

- Suppose we collect n commute times, y_1, y_2, \ldots, y_n .
- The *average* absolute loss, or **mean** absolute error (MAE), of the prediction h is:

$$
R_{\rm abs}(h)=\frac{1}{n}\sum_{i=1}^n|y_i-h|
$$

- We'd like to find the best constant prediction, h^* , by finding the h that minimizes mean absolute error.
- Any guesses?

The median minimizes mean absolute error!

• It turns out that the constant prediction h^* that minimizes mean absolute error,

$$
R_{\text{abs}}(h) = \frac{1}{n}\sum_{i=1}^n |y_i - h|
$$

is:

$$
h^* = \text{Median}(y_1, y_2, \ldots, y_n)
$$

- We won't prove this in lecture, but this extra video walks through it. Watch it!
- To make a bit more sense of this result, let's graph $R_{\rm abs}(h)$.

Visualizing mean absolute error

• Consider, again, our example dataset of five commute times.

72, 90, 61, 85, 92

• Where are the "bends" in the graph of $R_{\text{abs}}(h)$ – that is, where does its slope change?

MAE
 ean absolute error
 $+ |90 - h| + |61 - h| + |85 - h| +$ MAE

The median minimizes mean absolute error!

• The new problem we set out to solve was, find the h^* that minimizes:

$$
R_{\rm abs}(h)=\frac{1}{n}\sum_{i=1}^n|y_i-h|
$$

 \bullet The answer is:

$$
h^* = \text{Median}(y_1, y_2, \ldots, y_n)
$$

- The best constant prediction, in terms of mean absolute error, is always the median.
	- \circ When n is odd, this answer is unique.
	- \circ When n is even, any number between the middle two data points (when sorted) also minimizes mean absolute error.
	- \circ When n is even, define the median to be the mean of the middle two data points.

Choosing a loss function

- For the constant model $H(x)=h$, the **mean** minimizes mean **squared** error.
- For the constant model $H(x) = h$, the **median** minimizes mean **absolute** error.
- In practice, squared loss is the more common choice, as it's easily differentiable.

- But how does our choice of loss function impact the resulting optimal prediction?
- We'll discuss this more next class. \bullet

Answer at practicaldsc.org/q

What questions do you have?