

- Idea: The most important terms in a document are the terms that occur most often.
- So, let's count the number of occurrences of each term in each document.
 In other words, let's count the frequency of each term in each document.
- For example, consider the following three documents:

big big big data class data big data science science big data

- Let's construct a matrix, where:
 - there is one row per document,
 - one column per unique term, and
 - the value in row d and column t is the number of occurrences of term t in document d.

	big	data	class	science
big big big data class	4	1	1	0
data big data science	1 (2	0	1
science big data	1	1	0	1

Bag of words

- The bag of words model represents documents as vectors of word counts, i.e. term frequencies.

 The matrix below was created using the bag of words model.
- Each row in the bag of words matrix is a vector representation of a document.

		big	data	class	science	86
	big big big data class	4	1	1	0	
1	data big data science	(2	((1)	>
	sojence big data	1	1	0	1	

• For example, we can represent the document 2, **data big data science**, with the vector d_2 :

$$\vec{d}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

Vectors

$$\lambda = \begin{bmatrix} 2 \\ 1 \\ -4 \end{bmatrix}$$

n components:

(1) Add vectors elementwise

/ / □ O T

$$-3a = \begin{vmatrix} -6 \\ -3 \end{vmatrix}$$

The dot product

Given that à, b e R, the dot product is:

$$a \cdot b = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n$$
e.g.
$$a = \begin{bmatrix} a_1 b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \end{bmatrix}$$

$$\vec{a} \cdot \vec{b} = (2)(0) + (1)(5) + (-4)(1)$$

$$= 0 + 5 - 4$$

$$= (2)(0) + (1)(5) + (-4)(1)$$

$$= (2)(0) + (1)(5) + (-4)(1)$$

$$= (2)(0) + (1)(5) + (-4)(1)$$

$$= (2)(0) + (1)(5) + (-4)(1)$$

$$= (2)(0) + (1)(5) + (-4)(1)$$

$$= (2)(0) + (1)(5) + (-4)(1)$$

$$= (2)(0) + (1)(5) + (-4)(1)$$

$$= (2)(0) + (1)(5) + (-4)(1)$$

$$= (2)(0) + (1)(5) + (-4)(1)$$

$$= (2)(0) + (1)(5) + (-4)(1)$$

$$= (2)(0) + (1)(5) + (-4)(1)$$

$$= (2)(0) + (1)(5) + (1)(5) + (-4)(1)$$

$$= (2)(0) + (1)(5) + (1)(5) + (1)(1)$$

$$= (2)(0) + (1)(0) + (1)(0)$$

$$= (2)(0) + (1)(0) + (1)(0)$$

$$= (2)(0) + (2)(0) + (1)(0)$$

$$= (2)(0) + (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

$$= (2)(0) + (2)(0)$$

Geometric definition

Assume a, be R".

Diedvile 1012 definition

$$\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos \theta$$

Aside:

 $\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos \theta$

the angle between them

 $\vec{a} = \begin{bmatrix} 2 \\ -4 \end{bmatrix} \vec{b} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$

Previous slide: $\vec{a} \cdot \vec{b} = [1]$
 $\vec{a} \cdot \vec{b} = [\sqrt{21}](\sqrt{26})\cos \theta$

Figure 1012 decorated and 1012 decorated

1/21/= \(2^2 + 1^2 + (-4)^2 = \(\sqrt{21} \) ||\(\text{II}| = \sqrt{0^2 + \sqrt{2} + \text{1}} = \text{126}

16.1

/ / D O T | &

8

 $= \sqrt{21} \sqrt{26} \cos \theta$ al so a.b= V21 526 cos 0 more similar two vectors are, cos 0=-1 when 0=180

?

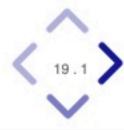
Cosine similarity

 To measure the similarity between two documents, we can compute the cosine similarity of their vector representations:

cosine similarity
$$(\vec{u}, \vec{v}) = \cos \theta = \frac{|\vec{u} \cdot \vec{v}|}{|\vec{u}||\vec{v}|}$$

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$$

$$\Rightarrow \cos \theta = \frac{1}{2}$$



Normalizing

• Why can't we just use the dot product – that is, why must we divide by $|\vec{u}||\vec{v}|$ when computing cosine similarity?

cosine similarity
$$(\vec{u}, \vec{v}) = \cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}$$

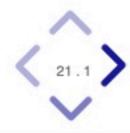
	big	data	class	science
big big big data class	4	1	1	0
data big data science	1	2	0	1
science big data	1	1	0	1

the dot to

Consider the following two pairs of documents:

Pair		Dot Product	Cosine Similarity
big big big data class	and data big data science	6	0.577
science big data and data	big data science	4	0.943

• "big big big data class" has a large dot product with "data big data science" just because the former has the



$$idf(t) = \log \left(\frac{\text{total # of documents}}{\text{# of documents in which } t \text{ appears}} \right)$$

- Example: What is the inverse document frequency of "billy" in the following three documents?
 - "my brother has a friend named billy who has an uncle named billy"

 - "my favorite artist is named jilly boel"
 "why does he talk about someone named billy so often"
- Answer: $\log\left(\frac{3}{2}\right) \approx 0.4055$. Here, we used the natural logarithm. It doesn't matter which log base we use, as long as we keep it consistent throughout all of our calculations. • Answer: $\log(\frac{3}{2}) \approx 0.4055$.
- Intuition: If a word appears in every document (like "the" or "has"), it is probably not a good summary of any one document.
- Think of idf(t) as the "rarity factor" of t across documents the larger idf(t) is, the more rare t is.

idf(t) large $\implies t$ rare across all documents idf(t) small $\implies t$ common across all documents

Term frequency-inverse document frequency

• The term frequency-inverse document frequency (TF-IDF) of term t in document d is the product:

tfidf
$$(t, d) = tf(t, d) \cdot idf(t)$$

$$= \frac{\# \text{ of occurrences of } t \text{ in } d}{\text{total } \# \text{ of terms in } d} \cdot \log \left(\frac{\text{total } \# \text{ of documents}}{\# \text{ of documents in which } t \text{ appears}}\right)$$

@ localhost

/ / D O T

how common

now rare is to the overall.

