Lists

A list is an ordered collection of values. To create a new list from scratch, we use [square brackets].

```
In [16]: mixed_list = [-2, 2.5, 'michigan', [1, 3], max] # Different types!
mixed_list

Out[16]: [-2, 2.5, 'michigan', [1, 3], <function max>]
```

As you saw in Discussion 1, there are a variety of built-in functions that work with lists.

```
In [17]: max(['hey', 'hi', 'hello'])

Out[17]: 'hi'

function
```

To add elements to the end of a list, we use the append method.

Note that the append method is **destructive**, because it does something other than return an output. We try to avoid destructive operations when possible.

```
In []: mixed_list.append("zebras") # No output, but has a side effect!

In []: ...

nethod of 15ts; uses dot notation
```


Activity

Suppose we run the cell below.

 $1^2 + 3^2 = 10$

run $\begin{vmatrix} a = 1 \\ b = 2 \end{vmatrix} = 3$ b = 2

then, suppose we run the cell below twice.

total = square_and_cube(1, 2)

What is the value of total? Try and answer without writing any code.

$$\frac{\text{cun 2: } a = 1}{\text{total} = 10}$$

$$\frac{1}{\text{b} = 2}$$


```
# Cell B
mystery(creature)
creature
```

Try and answer without writing any code.

```
changes last element to be 15
In [58]: def mystery(vals):
           vals[-1] = 156
           return vals.append('BBB')
                      None
In [59]: hello = [4, 5]
       mystery(hello)
In [60]: hello
Out[60]: [4, 15, 'BBB']
```

Part 1

```
In []: creature = [1, 2, 3]
       mystery(creature)
```