Spans and projections, revisited

$$\omega_1 \tilde{\chi}^{(1)} + \omega_2 \tilde{\chi}^{(2)}$$

Moving to multiple dimensions

- Let's now consider three vectors, \vec{y} , $\vec{x}^{(1)}$, and $\vec{x}^{(2)}$, all in \mathbb{R}^n .
- Question: What vector in $\operatorname{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?

• That is, what values of w_1 and w_2 minimize $\|ec{e}\| = \|ec{y} - w_1 ec{x}^{(1)} - w_2 ec{x}^{(2)}\|$?

Answer:
$$\omega_{1}$$
 and ω_{2} such that:
 $\vec{x}^{(1)} \cdot \vec{e} = 0$
 $\vec{x}^{(2)} \cdot \vec{e} = 0$

Matrix-vector products create linear combinations of columns! the same!

$$\vec{x}^{(1)} = \begin{bmatrix} 2\\5\\3 \end{bmatrix} \qquad \vec{x}^{(2)} = \begin{bmatrix} -1\\0\\4 \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} 1\\3\\9 \end{bmatrix} \qquad \vec{\omega} \cdot \vec{x}^{(1)} + \omega_2 \cdot \vec{x}^{(2)} \\ \vec{\omega} \cdot \vec{\omega$$

• Then, if $ec{w}=egin{bmatrix}w_1\\w_2\end{bmatrix}$, linear combinations of $ec{x}^{(1)}$ and $ec{x}^{(2)}$ can be written as $Xec{w}$.

• The span of the columns of X, or span(X), consists of all vectors that can be written in the form $X\vec{w}$.

Minimizing projection error in multiple dimensions

$$X = \begin{bmatrix} | & | \\ \vec{x}^{(1)} & \vec{x}^{(2)} \\ | & | \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 5 & 0 \\ 3 & 4 \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$$

- Goal: Find the vector $\vec{w} = \begin{bmatrix} w_1 & w_2 \end{bmatrix}^T$ such that $\|\vec{e}\| = \|\vec{y} X\vec{w}\|$ is minimized. As we've seen, \vec{w} must be such that: $\omega_1 \vec{x}^{(1)} + \omega_2 \vec{x}^{(2)}$

$$egin{aligned} ec{x}^{(1)} \cdot \left(ec{y} - w_1 ec{x}^{(1)} - w_2 ec{x}^{(2)}
ight) &= 0 \ ec{x}^{(2)} \cdot \left(ec{y} - w_1 ec{x}^{(1)} - w_2 ec{x}^{(2)}
ight) &= 0 \ ec{e} \end{aligned}$$

• How can we use our knowledge of matrices to rewrite this system of equations as a single equation?

Simplifying the system of equations, using matrices

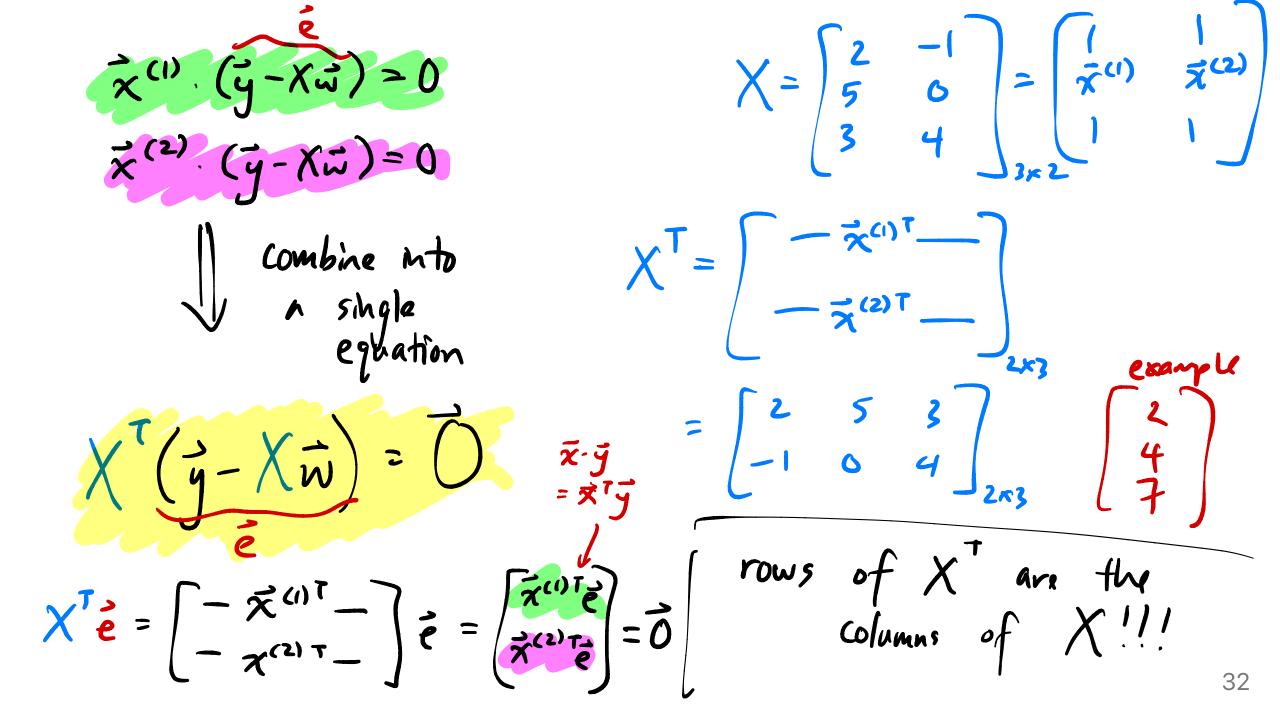
$$X = \begin{bmatrix} | & | \\ \vec{x}^{(1)} & \vec{x}^{(2)} \\ | & | \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 5 & 0 \\ 3 & 4 \end{bmatrix} \quad \vec{y} = \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$$
$$\vec{x}^{(1)} \cdot \left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)} \right) = 0$$
$$\vec{x}^{(2)} \cdot \left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)} \right) = 0$$
$$\vec{x}^{(2)} \cdot \left(\vec{y} - w_1 \vec{x}^{(1)} - w_2 \vec{x}^{(2)} \right) = 0$$
$$\vec{z}^{(1)} \cdot \left(\vec{y} - \vec{x} \cdot \vec{x} \right) = 0$$
$$\vec{z} = \vec{y} - \omega_1 \vec{z}^{(1)} - \omega_2 \vec{z}^{(1)} = \vec{y} - \vec{x} \cdot \vec{\omega}$$

Simplifying the system of equations, using matrices

$$X = \begin{bmatrix} | & | \\ \vec{x}^{(1)} & \vec{x}^{(2)} \\ | & | \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 5 & 0 \\ 3 & 4 \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$$

1. $w_1 ec{x}^{(1)} + w_2 ec{x}^{(2)}$ can be written as $X ec{w}$, so $ec{e} = ec{y} - X ec{w}$.

2. The condition that \vec{e} must be orthogonal to each column of X is equivalent to condition that $X^T \vec{e} = 0$.



The normal equations

$$X = egin{bmatrix} | & | \ ec{x}^{(1)} & ec{x}^{(2)} \ | & | \end{bmatrix} = egin{bmatrix} 2 & -1 \ 5 & 0 \ 3 & 4 \end{bmatrix} \qquad ec{y} = egin{bmatrix} 1 \ 3 \ 9 \end{bmatrix}$$

- Goal: Find the vector $\vec{w} = \begin{bmatrix} w_1 & w_2 \end{bmatrix}^T$ such that $\|\vec{e}\| = \|\vec{y} X\vec{w}\|$ is minimized.
- We now know that it is the vector \vec{w}^* such that:

$$X^{T}\vec{e} = 0$$

$$X^{T}(\vec{y} - X\vec{w}^{*}) = 0$$

$$X^{T}\vec{y} - X^{T}X\vec{w}^{*} = 0$$

$$\implies X^{T}X\vec{w}^{*} = X^{T}\vec{y}$$

• The last statement is referred to as the **normal equations**.

The general solution to the normal equation

 $X \in \mathbb{R}^{n imes d}$ $ec{y} \in \mathbb{R}^n$

- Goal, in general: Find the vector $\vec{w} \in \mathbb{R}^d$ such that $\|\vec{e}\| = \|\vec{y} X\vec{w}\|$ is minimized.
- We now know that it is the vector \vec{w}^* such that:

$$X^T \vec{e} = 0$$

 $\implies X^T X \vec{w}^* = X^T \vec{y}$

• Assuming $X^T X$ is invertible, this is the vector:

$$egin{aligned} ec{w}^* = (X^T X)^{-1} X^T ec{y} \end{aligned}$$

- This is a big assumption, because it requires $X^T X$ to be full rank.
- If $X^T X$ is not full rank, then there are infinitely many solutions to the normal equations, $X^T X \vec{w}^* = X^T \vec{y}$.

What does it mean?

- Original question: What vector in $\operatorname{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
- Final answer: It is the vector $X\vec{w}^*$, where:

$$ec{w}^* = (X^T X)^{-1} X^T ec{y}$$

• Revisiting our example:

$$X = egin{bmatrix} | & | \ ec{x}^{(1)} & ec{x}^{(2)} \ | & | \end{bmatrix} = egin{bmatrix} 2 & -1 \ 5 & 0 \ 3 & 4 \end{bmatrix} \qquad ec{y} = egin{bmatrix} 1 \ 3 \ 9 \end{bmatrix}$$

- Using a computer gives us $ec{w}^* = (X^T X)^{-1} X^T ec{y} \approx egin{bmatrix} 0.7289 \\ 1.6300 \end{bmatrix}$.
- So, the vector in $\operatorname{span}(\vec{x}^{(1)},\vec{x}^{(2)})$ closest to \vec{y} is $0.7289\vec{x}^{(1)}+1.6300\vec{x}^{(2)}$.

Overview: Spans and projections

An optimization problem, solved

- We just used linear algebra to solve an **optimization problem**.
- Specifically, the function we minimized is:

$$\operatorname{error}(ec{w}) = \|ec{y} - Xec{w}\|$$

 \circ This is a function whose input is a vector, \vec{w} , and whose output is a scalar!

• The input, \vec{w}^* , to $\operatorname{error}(\vec{w})$ that minimizes it is one that satisfies the normal equations:

$$X^T X \vec{w}^* = X^T \vec{y}$$

If $X^T X$ is invertible, then the unique solution is:

$$\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$$

• We're going to use this frequently!