Spans and projections

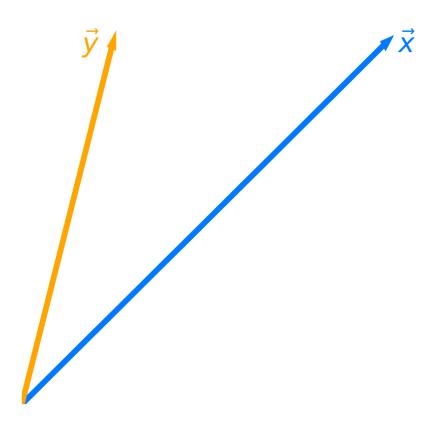
Projecting onto a single vector

- Let \vec{x} and \vec{y} be two vectors in \mathbb{R}^n .
- The span of \vec{x} is the set of all vectors of the form:

 $w\vec{x}$

where $w \in \mathbb{R}$ is a scalar.

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- The vector in $\operatorname{span}(\vec{x})$ that is closest to \vec{y} is the ______ projection of \vec{y} onto $\operatorname{span}(\vec{x})$.



Projection error

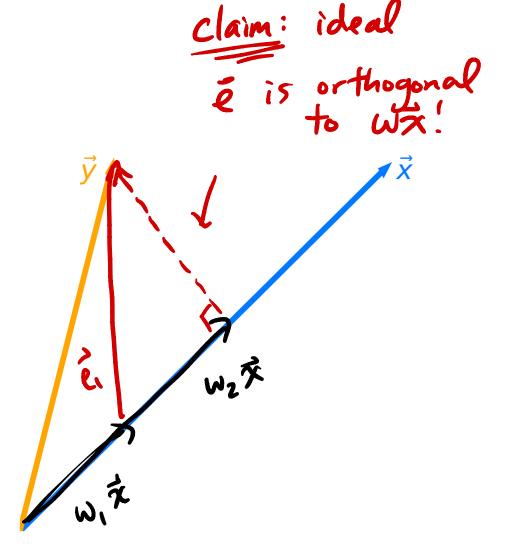
- Let $\vec{e} = \vec{y} w\vec{x}$ be the **projection** error: that is, the vector that connects \vec{y} to $\mathrm{span}(\vec{x})$.
- Goal: Find the w that makes \vec{e} as short as possible.
 - That is, minimize:

$$\| \vec{e} \|$$

o Equivalently, minimize:

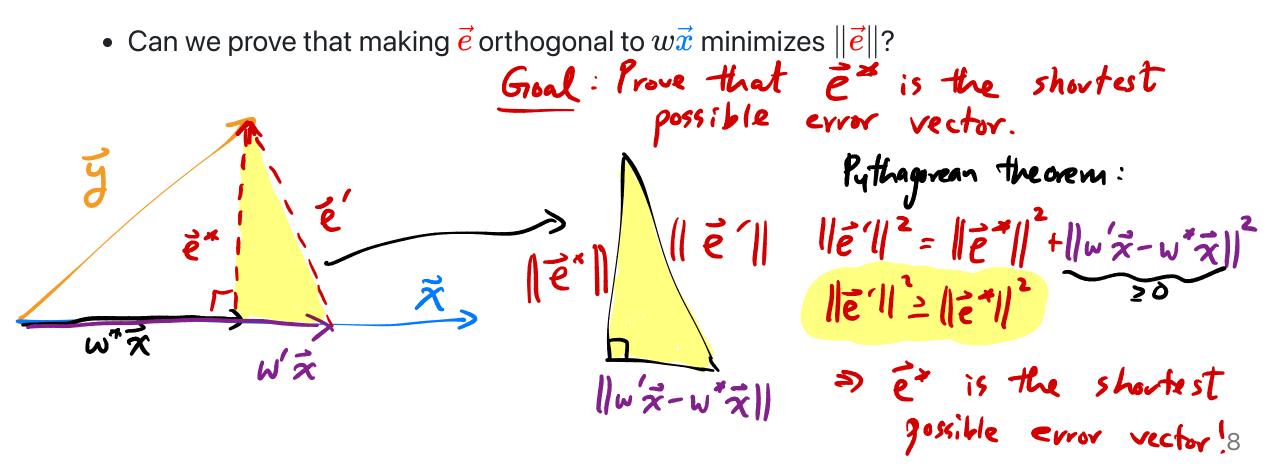
$$\| \vec{\pmb{y}} - w\vec{\pmb{x}} \|$$

• Idea: To make \vec{e} has short as possible, it should be orthogonal to $w\vec{x}$.



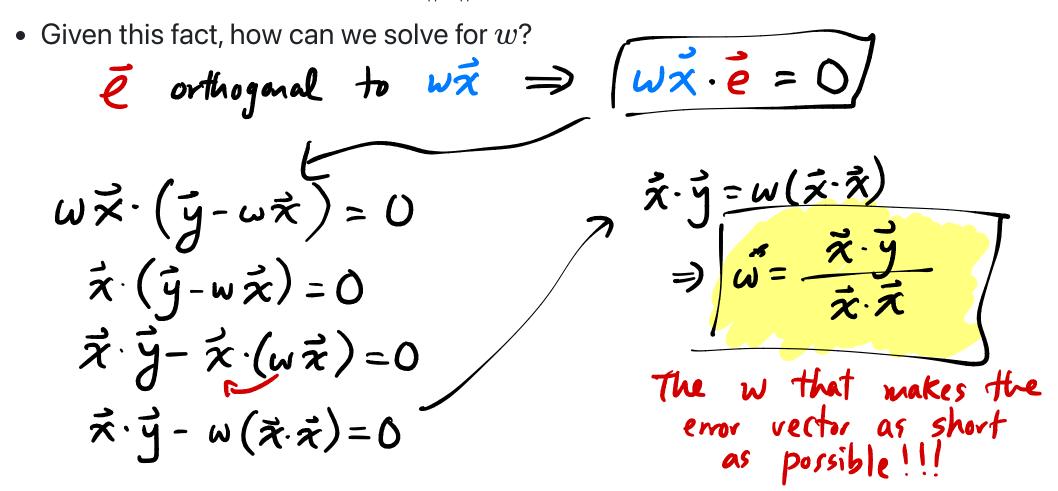
Minimizing projection error

- Goal: Find the w that makes $\vec{e} = \vec{y} w\vec{x}$ as short as possible.
- Idea: To make \vec{e} as short as possible, it should be orthogonal to $w\vec{x}$.



Minimizing projection error

- Goal: Find the w that makes $\vec{e} = \vec{y} w\vec{x}$ as short as possible.
- Now we know that to minimize $\|\vec{e}\|$, \vec{e} must be orthogonal to $w\vec{x}$.



Orthogonal projection

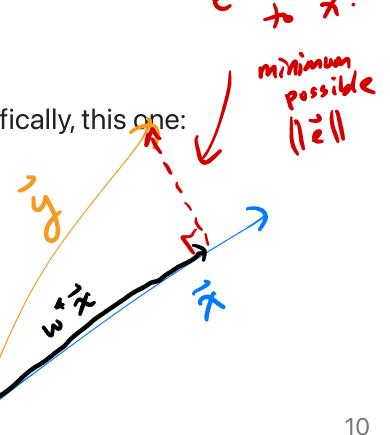
- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- **Answer**: It is the vector $w^*\vec{x}$, where:

$$w^* = rac{ec{x} \cdot ec{y}}{ec{x} \cdot ec{x}}$$

• Note that w^* is the solution to a minimization problem, specifically, this ∞ e:

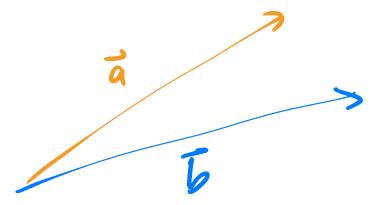
$$\operatorname{error}(w) = \| \vec{e} \| = \| \vec{y} - w\vec{x} \|$$

- We call $w^*\vec{x}$ the orthogonal projection of \vec{y} onto $\mathrm{span}(\vec{x})$.
 - \circ Think of $w^*\vec{x}$ as the "shadow" of \vec{y} .



Exercise

Let
$$ec{a} = egin{bmatrix} 5 \\ 2 \end{bmatrix}$$
 and $ec{b} = egin{bmatrix} -1 \\ 9 \end{bmatrix}$.



What is the orthogonal projection of \vec{a} onto span (\vec{b}) ?

Your answer should be of the form $w^* \vec{b}$, where w^* is a scalar.

$$\omega^* = \frac{1}{5 \cdot 5} \cdot \frac{1}{6} = \frac{(-1)(5) + (9)(2)}{(-1)^2 + (9)^2} = \frac{13}{82}$$

orthogonal projection of
$$\overline{a}$$
 onto $\overline{span}(\overline{b})$ is $\frac{13}{82}\overline{b}$.