d vectors, each has n components

Linear combinations

- Let \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_d all be vectors in \mathbb{R}^n .
- A linear combination of \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_d is any vector of the form:

$$a_1 \vec{v}_1 + a_2 \vec{v}_2 + \ldots + a_d \vec{v}_d$$

where $a_1, a_2, ..., a_n$ are all scalars.

$$\vec{V}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad \vec{V}_2 = \begin{bmatrix} -1 \\ 4 \end{bmatrix} \quad \vec{V}_3 = \begin{bmatrix} 0 \\ q \end{bmatrix}$$

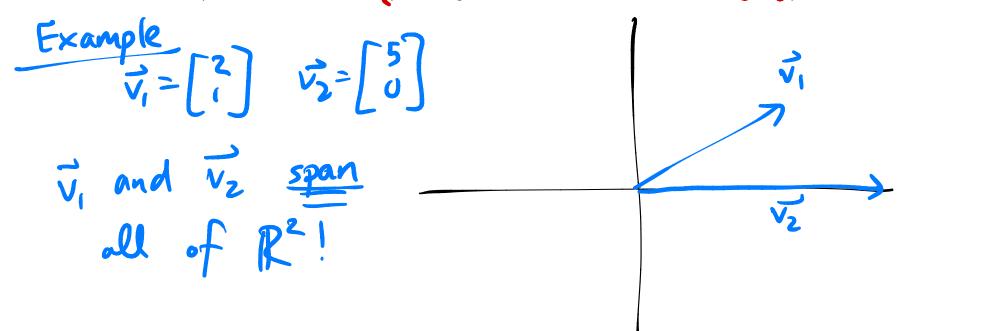
Examples
$$2\vec{v} + \vec{v_2} + \vec{q} \vec{v_3} = \begin{bmatrix} - \\ - \end{bmatrix}$$

$$0\vec{v_1} + \vec{v_2} - \vec{v_3}$$

Span

- Let \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_n all be vectors in \mathbb{R}^n .
- The **span** of \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_d is the set of all vectors that can be created using linear combinations of those vectors.
- Formal definition:

$$\operatorname{span}(ec{v}_1,ec{v}_2,\ldots,ec{v}_{oldsymbol{d}}) = \{a_1ec{v}_1+a_2ec{v}_2+\ldots+a_{oldsymbol{d}}ec{v}_{oldsymbol{d}}:a_1,a_2,\ldots,a_{oldsymbol{d}}\in\mathbb{R}\}$$



We can! vi and viz aven't scalar multiples of each other: they point in diff.

Exercise

Let
$$ec{v}_1=egin{bmatrix}2\\-3\end{bmatrix}$$
 and let $ec{v}_2=egin{bmatrix}-1\\4\end{bmatrix}$. Is $ec{y}=egin{bmatrix}9\\1\end{bmatrix}$ in $\mathrm{span}(ec{v_1},ec{v_2})$?

If so, write \vec{y} as a linear combination of $\vec{v_1}$ and $\vec{v_2}$.

$$=) 2\omega_1 - \omega_2 = 9 \qquad \Rightarrow solve for \omega_1, \omega_2.$$

$$-3\omega_1 + 4\omega_2 = 1$$