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Accuracy of COVID tests

e The results of 100 Michigan Medicine COVID tests are given below.
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Discussion

w TP
precision = TP+ FP recall =

e &) When might high precision be more important than high recall?

e (& When might high recall be more important than high precision?

wedica? o4t

TP
P+ FN | .
¢ po SKVL
) 1[« te,aﬂ.?- bod
R A
Ly



O ¢

X

Logistic regression

e Logistic regression is a linear classification technique that builds upon linear regression.

e It models the probability of belonging to class 1, given a feature vector:
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Attempting to use squared loss

e Our default loss function has always been squared loss, so we could try and use it here.
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Glucose;
In [15]: util.show_logistic_mse_surface(X_train, y_train)

Mean Squared Error Loss Surface

for Logistic Regression
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e What do you notice?
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e Suppose y; = 1.Then, the graph of the squared loss of the prediction p; is below.

In [16]: util.show_squared_loss_individual()

S d loss is bounded to (0, 1) when predicting probabilities!
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_ [ -loglp)  ify =1
Lce(yzapl) - { —log(l —pi) if Vi = 0
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e Note that in the two cases - y; = 1 and y; = 0 - the cross-entropy loss function resemble

squ 0ss; but Issunbounded when the predicted probabilities p; are far from y;.

: util.show_ce_loss_individual 1()

Cross Entropy Loss when yi = 1
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e We can define the cross-entropy loss function piecewise. If y; is an observed value and p; is a predicted

probability, then:

_ [ —loglp)  ify =1
Lce(yispi) - { _log(l _pl) lf y, = O @@W‘VA/M [

e An equivalent formulation of L. thatisn't piecewise is:

Le.(y;,pi) =—;logp, + (1 — J’i)log(l — Di))
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Decision boundaries for logistic regression
* |In our single feature model that predicts 'Outcome' givenjust 'Glucose', our predicted
probabilities are of the form:
P(y = 1|Glucose) = o (w3 + wi - Glucose) “
what=I's C?
e Suppose we fix a threshold, 7'. Then, our decision boundary is of the form:
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