0 ¢«

X

& localhost

e To find optimal model parameters for the model H(x) = wy + wx and squared loss, we minimized
empirical risk:

N :
Ry (w0, w1) = Ryg (&) = ;m — (W + w; x;))

e This is a function of multiple variables, and is differentiable, so it has a gradient!

5 ¢ 2K
- Z(.Vi — (wo + w1x;)) | PWe
i=1

) F
D W,

VR(w) =)
2 Z()’i — (wo + w1 x;))Xx;
L

- Wy
e Key idea: To find w* = [2] , we could use gradient descent!
w
1

(om[ﬂ(b! iM(‘Ch\/ 1

e \Why would we, when closed-form solutions exist? /

~»
Parameters: wg = —0.1,w; = =95.1

adient

=

Negative Gradient

Step Size

Ry 30,57 2 £ Youlube =r

>

il

e

X

& localhost

Implementing partial derivatives

. 1
Ry (w) = - ;()’i — (wp + w1 x;))”
L/ Me o\

i — (wo + wix;))

In [7]: def dR w@(w0d, wl);
returr@ -~ (w0 + wl * X))
def dR_wl (W@, w"

return -2 x np.mean((y - (w@ + wl * X)) * Xx)

il

e

X

¢,

e The update rule we'll follow is:

Implementing gradient descent (RS2
(t)

LB(HI) —>(t) — aVR(D —>(t)
,—__/
e We can treat this as two separate update equations:

D 0 OR |)
— W — w
“o 0 awo ()

t+1 t -(1)
7 =) - a 2R ()

& localhost (=) @O

wl = wl - alpha * dR_wl(w@, wl)
wd_history.append(w0)
wl_history.append(wl)
if np.abs(w@_history[-1] - w@_history[-2]) <= threshold:
break
return w@_history, wl_history

In [10]: w@_history, wl_history = gradient_descent_for_regression(0, @, 0.01)

In [11]: w@_history[-1] —— !h\ﬂ (veasSeé 'ﬁ\e {U/r‘u\/\j
Outl11l]: 142.1051891023626 .
O
In [12]: wl_history[-1] d\ = C \
p— ’}7}7 oA g Cﬂ)
Outl12]: -8.146983792459055

de VR(E®)

= &l
e |t seems that we converge at the right value! But hm many iterations did it take?

n U a
What could we do to speed it up? us
P P y j J, y Joto

> shelestic| 5%

In [13]: len(w@_history)

Out[13]: 20664

1

O <« < & localhost n

Q e The decision boundaries of a classifier visualize the regions in the feature space that
separate different predicted classes.

e The decision boundaries for mode L_knn are visualized below.

If a new person's feature vector lies in the blue region, we'd predict they do have diabetes, otherwise, we'd predict they don't.

In [28]: util.show_decision_boundary(model_knn, X_train, y_train, title='Decision Boundary when $k = 28$")

Decision Boundary wh M k\
60 = - no diabetes ChpSen 'H"”““o h

o (diabetes

BMI

0 25 50 75 100 125 150 175

(D ¢

X

& localhost

e What would the decision boundaries look like if k increased or decreased?

Play with the slider below to find out!

In [29]: from ipywidgets import interact
interact(lambda k: util.visualize_k(k, X_train, y_train), k=(1, 51));

k @- ~ 1
Decision Boundary whe
60 @+ nodiabetes
e diabetes
40

BMI

20 -

lots

0 OV
0 25

N 211 >

& localhost

Activity

It seems that a k-NN classifier that uses k = 1 should achieve 100% training accuracy. Why doesn't the
model defined below have 100% training accuracy?

In [38]: model_kl1l = KNeighborsClassifier(n_neighbors=1)
model_k1.fit(X_train, y_train)

WEBEE T NeighborsClassifier

KNeighborsClassifier(n_neighbors=1)

In [39]: # Training accuracy — high, but not 100%.
model_kl.score(X_train, train)

Out[39];,9.9913194444444444

In [4 set is lower than when k = 28!

model_kl.score(X_test, y_test)

Outl40]: 0.6822916666666666

In [41]: test_scores['knn with k = 1'] = model_kl.score(X_test, y_test)
test_scores

Out[41]: knn with k = 28 0.75
knn with k 1 0.68
dtype: float64d

q4: D>

0 ¢

X

C @& localhost

Decision boundaries for a decision tree classifier

In [53]: util.show_decision_boundary(model_tree, X_train, y_train, title='Decision Boundary for a Tree of Depth 3')

J)kvrb(*bov' Hro

fm%m @ spocs

Decision Boundary for a Tree bf Deptt

es

60 » no diabetes
e diabetes

E% N [.:_:f‘; _ 145“1é7_. >12255//h/\)f)
20 | “le o guestion ¢
0 S

0 25 50 75 100 12567'11?009(172:: !'L‘P.Y

Glucose

e Observe that the decision boundaries — at least when we set max_depth to 3 - look less
"jagged" than with the k-NN classifier.

Q 3.1 >

D

& localhost

< ¢

% Activity

ChickenClassifiers have many hyperparameters, one of which is height. As we increase the value of heigfft, the model variance of the

resulting ChickenClassifier also increases.

the plot below.

First, we consider the training and testing accuracy of a ChickenClassifier trained using various values of height. Consid
GV'A('f' “‘0 bl '/1\

L Mwmij

...
-
..
-

Accuracy

Which of the following depicts training accuracy vs

Option 1

ption 3

Which of the following depicts testing acguracy vs. height?

Option 1

Ontion 2

i

