

• To find optimal model parameters for the model  $H(x) = w_0 + w_1 x$  and squared loss, we minimized empirical risk:

$$R_{\text{sq}}(w_0, w_1) = R_{\text{sq}}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

• This is a function of multiple variables, and is differentiable, so it has a gradient!

$$\nabla R(\vec{w}) = \begin{bmatrix} -\frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) \\ -\frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i \end{bmatrix} \frac{\partial R}{\partial w_0}$$

- **Key idea**: To find  $\vec{w}^* = \begin{bmatrix} w_0^* \\ w_1^* \end{bmatrix}$ , we could use gradient descent!
- Why would we, when closed-form solutions exist?









## Implementing partial derivatives

$$R_{\text{sq}}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

$$\nabla R(\vec{w}) = \begin{bmatrix} 2 & \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) \\ -n & \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) \\ -\frac{2}{n} & \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i \end{bmatrix}$$

```
In [7]: def dR_w0(w0, w1):
    return -2 * np.mean(y - (w0 + w1 * x))
def dR_w1(w0, w1):
    return -2 * np.mean((y - (w0 + w1 * x)) * x)
```





# Implementing gradient descent

The update rule we'll follow is:

$$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \alpha \nabla R(\vec{w}^{(t)})$$



$$w_0^{(t+1)} = w_0^{(t)} - \alpha \frac{\partial R}{\partial w_0} (\vec{w}^{(t)})$$

$$w_1^{(t+1)} = w_1^{(t)} - \alpha \frac{\partial R}{\partial w_1} (\vec{w}^{(t)})$$





```
w1 = w1 - alpha * dR_w1(w0, w1)
                w0_history.append(w0)
                w1_history.append(w1)
                if np.abs(w0_history[-1] - w0_history[-2]) <= threshold:</pre>
                   break
            return w0_history, w1_history
In [10]: w0_history, w1_history = gradient_descent_for_regression(0, 0, 0.01)
                                                        - increase the learning
In [11]: w0_history[-1]
Out[11]: 142.1051891023626
In [12]: w1_history[-1]
Out[12]: -8.146983792459055

    It seems that we converge at the right value! But how many iterations did it take?

    What could we do to speed it up?
```

In [13]: len(w0\_history)

Out[13]: 20664



- The decision boundaries of a classifier visualize the regions in the feature space that separate different predicted classes.
- The decision boundaries for model\_knn are visualized below.

  If a new person's feature vector lies in the blue region, we'd predict they do have diabetes, otherwise, we'd predict they don't.





ullet What would the decision boundaries look like if k increased or decreased?

Play with the slider below to find out!







## **Activity**

It seems that a k-NN classifier that uses k=1 should achieve 100% training accuracy. Why **doesn't** the model defined below have 100% training accuracy?

```
In [38]: model_k1 = KNeighborsClassifier(n_neighbors=1)
         model_k1.fit(X_train, y_train)
Out [38]:
               KNeighborsClassifier
         KNeighborsClassifier(n_neighbors=1)
                                                                                             same glucose,
same BMI,
In [39]: # Training accuracy — high, but not 100%.
         model_k1.score(X_train, y_train)
Out [39] • 0.9913194444444444
In [40]: # Accuracy on test set is lower than when k = 28!
         model_k1.score(X_test, y_test)
Out[40]: 0.682291666666666
In [41]: test_scores['knn with k = 1'] = model_k1.score(X_test, y_test)
                                                                                               impossible to have
100%. Fraking acc.
         test_scores
Out[41]: knn with k = 28
                            0.75
         knn with k = 1
                            0.68
         dtype: float64
```



### Decision boundaries for a decision tree classifier



• Observe that the decision boundaries – at least when we set  $max\_depth$  to 3 – look less "jagged" than with the k-NN classifier.





## Activity

