

1. Pick a positive number, α . This number is called the **learning rate**, or **step size**.

Think of α as a hyperparameter of the minimization process.

- 2. Pick an initial guess $(w^{(0)})$. guess $for w^*$
- 3. Then, repeatedly update your guess using the update rule:

learning rate step size in multiplier on derivative.

- ullet Repeat this process until **convergence** that is, when w doesn't change much from iteration to iteration.
- This procedure is called gradient descent.

Converging at W= -0.727

$$\frac{4}{4} = -4$$

$$\frac{4}{4} = -2$$

$$\frac{4}{3} = 2$$

$$= h^{(0)} - \alpha \frac{dk}{dk} (h^{(0)})$$

$$= 4 - \frac{1}{4} \cdot 2(4)$$

$$= 4 - 2 + 2h^{(0)} = 2h^{(0)}$$

$$= 4 - 2 + 2h^{(0)} = 2h^{(0)}$$

 $=\frac{1}{n}\frac{\dot{z}(y_i-h)}{\dot{z}=1}$ mean squared this for

 $h^{(2)} = h^{(1)} - \alpha \frac{dR}{dh} (h^{(1)}) = 2 - \frac{1}{4} \cdot 2(2) = 1$

21.1

- When is gradient descent guaranteed to converge to a global minimum? What kinds of functions work well with gradient descent?
- How do we choose a step size?
- How do we use gradient descent to minimize functions of multiple variables, e.g.:

$$R_{\text{ridge}}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2 + \lambda \sum_{j=1}^d w_j^2$$

• Question: Why can't we use gradient descent to find $ec{w}_{
m LASSO}^*$?

$$R_{\text{LASSO}}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2 + \lambda \sum_{j=1}^{d} |w_d|$$

What makes a function convex?

40k-20k--20k -40k -60k -80k -30 -20 -10 10 20 30 50 60

A convex function ...

A non-convex function X.

Formal definition of convexity

• A function $f: \mathbb{R} \to \mathbb{R}$ is **convex** if, for **every** a,b in the domain of f, and for every

$$t \in [0, 1]$$
:
$$(1 - t)f(a) + tf(b) \ge f((1 - t)a + tb)$$

$$\text{The line before } f(a) \text{ and } f(b)$$

 This is a formal way of restating the definition from the previous slide.

'even degree: convex odd degree: non-convex

Activity

Which of these functions are not convex?

$$\bullet \mathsf{V} f(x) = |x|.$$

• X.
$$f(x) = e^x$$
.

• C.
$$f(x) = \sqrt{x-1}$$

$$f(x) = (x-3)^{24}$$

• E. More than one of the above are non-convex.

can take derivative twice.

Second derivative test for convexity

$$\frac{d^2f}{dw^2}(w) \ge 0, \quad \forall w$$
 for all

• Example: $f(x) = x^4$ is convex.

$$\frac{df}{dx} = 4x^3$$

$$\frac{df}{dx} = 12x^2 \ge 0 \quad \forall x$$

$$\vec{\chi} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\sqrt{f(x)} = \begin{bmatrix} 2(x_1-1) \\ -2(x_2-3) \end{bmatrix}$$

Minimizing functions of multiple variables

• Consider the function:

$$f(x_1, x_2) = (x_1 - 2)^2 + 2x_1 - (x_2 - 3)^2$$

• It has two partial derivatives: $\frac{\partial f}{\partial x_1}$ and $\frac{\partial f}{\partial x_2}$. See the annotated slides for what they are and how we find them.

$$\frac{\partial f}{\partial x_1} = 2(\chi_1 - 2) + \lambda = 2(\chi_1 - 1)$$

of fi vector of partial derivatives.

$$\frac{\partial f}{\partial x_1} = -2(x_2 - 3)$$

treat x2 as constant!

(3)

The gradient vector

• If $f(\vec{x})$ is a function of multiple variables, then its **gradient**, $\nabla f(\vec{x})$, is a vector containing its partial derivatives.

• Example:

$$f(\vec{x}) = (x_1 - 2)^2 + 2x_1 - (x_2 - 3)^2$$

$$\nabla f(\vec{x}) = \begin{bmatrix} 2(x_1 - 1) \\ -2(x_2 - 3) \end{bmatrix}$$

• Example:

$$f(\vec{r}) - \vec{r}^T$$

$$\nabla f(\vec{x}) = 2\vec{x}$$

At any given point, there are many directions in which you can go "up", but there's only one "steepest direction up", and that's the direction of the gradient!

Gradient descent for functions of multiple variables

• Example:

$$f(x_1, x_2) = (x_1 - 2)^2 + 2x_1 - (x_2 - 3)^2 \qquad \text{of } S$$

$$\nabla f(\vec{x}) = \begin{bmatrix} 2(x_1 - 1) \\ -2(x_2 - 3) \end{bmatrix}$$

• The minimizer of
$$f$$
 is a vector, $\vec{x}^* = \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix}$.

descent

• We start with an initial guess, $\vec{x}^{(0)}$, and step size lpha, and update our guesses using:

$$\vec{x}^{(t+1)} = \vec{x}^{(t)} - \alpha \nabla f(\vec{x}^{(t)})$$

Activity

$$f(x_1, x_2) = (x_1 - 2)^2 + 2x_1 - (x_2 - 3)^2$$

$$\nabla f(\vec{x}) = \begin{bmatrix} 2(x_1 - 1) \\ -2(x_2 - 3) \end{bmatrix}$$

$$\nabla f(\vec{x}) = \begin{bmatrix} 2(x_1 - 1) \\ -2(x_2 - 3) \end{bmatrix} \qquad \vec{\chi}^{(1)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 2(0 - 1) \\ -2(0 - 3) \end{bmatrix}$$

$$\vec{x}^{(t+1)} = \vec{x}^{(t)} - \alpha \nabla f(\vec{x}^{(t)}) = \begin{bmatrix} 2/3 \\ -2 \end{bmatrix}$$

descent. What is $\vec{x}^{(2)}$?

Given an initial guess of $\vec{x}^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and a step size of $\alpha = \frac{1}{3}$, perform **two** iterations of gradient

$$\begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 (2/3) - 1 \end{bmatrix} = \begin{bmatrix} 2(2/3) - 1 \\ -2(-2) - 3 \end{bmatrix}$$

empirical risk:

$$R_{\text{sq}}(w_0, w_1) = R_{\text{sq}}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

This is a function of multiple variables, and is differentiable, so it has a gradient!

$$\nabla R(\vec{w}) = \begin{bmatrix} -\frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) \\ -\frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i \end{bmatrix}$$

- **Key idea**: To find $\vec{w}^* = \begin{bmatrix} w_0^* \\ w_1^* \end{bmatrix}$, we *could* use gradient descent!
- Why would we, when closed-form solutions exist?