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1. Pick a positive number, a. This number is called the learning rate, or step size.

Think of & as a hyperparameter of the minimization process.

. gues for w7
2. Pick an initial guess
3. Then, repeatedly update your guess using the update rule:
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e
e Repeat this process until convergence - that is, when w doesn't change much from

iteration to iteration.

e This procedure is called gradient descent.
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W = —0.726 f(w) -11. 3157 df/dw(w) 0.0246

w = -0.7263, f(w) = -11.3157, df/dw(w) = 0.0182

W = —0.7265, f(w) = -11.3157, df/dw(w) = 0.0134
w=-0.7266, f(w) = -11.3157, df/dw(w) = 0.0099

w = -0.7267, f(w) = -11.3157, df/dw(w) = 0.0074
w=-0.7268, f(w) = -11.3157, df/dw(w) = 0.0054

w = -0.7268, f(w) = -11.3157, df/dw(w) = 0.004 |, i 5.0
w = -0.7269, f(w) = -11.3157, df/dw(w) = 0.003 pettin g
w = -0.7269, f(w) = -11.3157, df/dw(w) = 0.0022 .J
w=-0.7269, f(w) = -11.3157, df/dw(w) = 0.0016 Sl
w=-0.7269, f(w) = -11.3157, df/dw(w) = 0.0012 A 0.
w=-0.727, f(w) = -11.3157, df/dw(w)
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e When is gradient descent guaranteed to converge to a global minimum? What kinds of
functions work well with gradient descent?

e How do we choose a step size?

e How do we use gradient descent to minimize functions of multiple variables, e.qQ.:
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e Question: Why can't we use gradient descent to find LZ{ ASSO ¢ N OT
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Ryasso(w) = ;HJ’ — XW||* + 2




What makes a function convex?
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A convex function £4.
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A non-convex function X.
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Formal definition of convexity
e Afunction f : R — R is convex if, for every

a, b in the domain of f, and for every

t € [0, 1]: /

(1-0f@+1f() > f(1 —Da+1b)] t
£ L ol -

I\WAb

e This is a formal way of restating the definition

from the previous slide.
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Activity @

Which of these functions are not convex?

l
K@) = Ix| R ins
R [(x) =¢e". beloiN
(x) = vx -1 = BAD !
SRS (x) = (x = 3)7 bespeliees e

e E. More than one of the above are non-convex.
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Second derivative test for convexity

N T = T
o If f(?) is afunction of a single variable and is twice differentiable, then f(w) is convex if and
only if:
d2
/ (w)>20, Vw
duw? —

e Example: f(x) = x* is convex.

Af =iz’ i -px 20 VY

AX




D

e, & localhost ® O

Minimizing functions of multiple variables N A 9 vadient
e Consider the function: GUC ’i:
V@ C oy cﬁ
f(x1,x2) = (x1 — 2)* + 2x; — (x5 — 3)° IMO*(
e |t has two partial derivatives: L4 and ﬁ.
axl 0x2

See the annotated slides for what they are and how we find them.
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% The gradient vector

o If f (3_5) is a function of multiple variables, then its gradient, V f (3_5), is a vector containing its
partial derivatives.
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e Example: X o

f) = (x1 —2)* + 2x; — (x, = 3)° B ol
2(x; — 1)
VIiix) =
= | 2 -y
. = = L Xy ¢
xToax=[m %o --- xn] | e
e Example:
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At any given point, there are many directions in which you can go ., but there's only one
"steepest direction up”, and that's the directiem of the gradient!
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© Gradient descent for functions of multiple variables ()
e Example: \7 rf(’/( >
i¢ e dwvechon
fix) = (0 =P 420 = (=32 of sheepesT
aféef:é )
VG = | 2 e
~2(x; - 3) =\7 7@(% )
¢ Tle Aivechon
e The minimizer of f is a vector, X = [ii ] .
2

e We start with an initial guess, 3_5(0), and step size a, and update our guessesHising:

2 = 207 4y 73
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Activity

[ fex) = (g = 2%+ 2x) — (x, = 3Y J
/\ 2 R Ry F 20
2(x; — 1) X = /o 3 -2(0-7
V() = [ :
_2(.762 M 3) - 6 :_' N L‘]

some howl /(SA golld  wi i : P
X =Y  —aV —(f 2 s
‘H/U\\aMZP J(x X):[/‘é
S
Given an initial guess of x [ ‘ and a step size of @ = 3 nerform two iterationsof gradient

>(2)

descent. What is x* " ? / 2/2 Lf -
? CL J -2 (-2-3)




Lk € C & localhost

(X empirical risk:

Ry, 1) = Rg(i®) = — 3 (3 = (wp + w0 %))°

e This is a function of multiple variables, and is differentiable, so it has a gradient!

2 n
- Z()’i — (wo + w; x;))
VR(D) = =
_z Z()’i — (wo + w1 x;))x;
B =1

e Keyidea: To find w we could use gradient descent!
' [ wl ] . 07[‘{‘2)" M L

efpicient
e \Why would we, when closed-form solutions exist?
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