In [1]:
from lec_utils import *

Lecture 16 Supplementary Notebook¶

Regression using Linear Algebra¶

EECS 398-003: Practical Data Science, Fall 2024¶

practicaldsc.org • github.com/practicaldsc/fa24

Note: This notebook is only a supplementary notebook to the main lecture slides, which are in PDF form.

The main lecture slides can be found at practicaldsc.org under Lecture 16. (After the live lecture, an annotated version of the slides will be made available as well.)

Let's once again load in the commute times dataset as a DataFrame.

In [2]:
df = pd.read_csv('data/commute-times.csv')
df.head()
Out[2]:
date day home_departure_time home_departure_mileage ... mileage_to_work minutes_to_home work_departure_time_hr mileage_to_home
0 5/15/2023 Mon 2023-05-15 10:49:00 15873.0 ... 53.0 72.0 17.17 53.0
1 5/16/2023 Tue 2023-05-16 07:45:00 15979.0 ... 54.0 NaN NaN NaN
2 5/22/2023 Mon 2023-05-22 08:27:00 50407.0 ... 54.0 82.0 15.90 54.0
3 5/23/2023 Tue 2023-05-23 07:08:00 50535.0 ... 54.0 NaN NaN NaN
4 5/30/2023 Tue 2023-05-30 09:09:00 50664.0 ... 54.0 76.0 17.12 54.0

5 rows × 18 columns

There are many columns in here, but the only ones we're interested in for now are 'departure_hour' and 'minutes'.

In [3]:
df[['departure_hour', 'minutes']]
Out[3]:
departure_hour minutes
0 10.82 68.0
1 7.75 94.0
2 8.45 63.0
... ... ...
62 7.58 68.0
63 7.45 90.0
64 7.60 83.0

65 rows × 2 columns

In [4]:
fig = px.scatter(df,
           x='departure_hour',
           y='minutes',
           size=np.ones(len(df)) * 50,
           size_max=8)
fig.update_xaxes(title='Home Departure Time (AM)')
fig.update_yaxes(title='Minutes')
fig.update_layout(title='Commuting Time vs. Home Departure Time')
fig.update_layout(width=700)

Finding the Regression Line, Using the Old Formulas¶


Recall, the formulas for the optimal intercept ($w_0^*$) and slope ($w_1^*$) are

$$w_1^* = r \frac{\sigma_y}{\sigma_x}$$$$w_0^* = \bar{y} - w_1^* \bar{x}$$
In [5]:
def slope(x, y):
    return np.corrcoef(x, y)[0, 1] * np.std(y) / np.std(x)
In [6]:
def intercept(x, y):
    return np.mean(y) - slope(x, y) * np.mean(x)
In [7]:
w0_star = intercept(df['departure_hour'], df['minutes'])
w1_star = slope(df['departure_hour'], df['minutes'])
# Just fancy printing – ignore these next two lines.
rule_string = ('$$\\text{Predicted Commute Time (in Minutes)} = ' + 
               f'{round(w0_star, 2)} + {round(w1_star, 2)}' + 
               '\cdot \\left( \\text{Departure Hour} \\right)$$')
display(HTML(f'<h4>The best linear predictor for this dataset is</h4><br><center>{rule_string}</center>'))

The best linear predictor for this dataset is


$$\text{Predicted Commute Time (in Minutes)} = 142.45 + -8.19\cdot \left( \text{Departure Hour} \right)$$
In [8]:
hline = px.line(x=[5.5, 11.5], y=[97.405, 48.265]).update_traces(line={'color': 'red', 'width': 4})
fline1 = go.Figure(fig.data + hline.data)
fline1.update_xaxes(title='Home Departure Time (AM)')
fline1.update_yaxes(title='Minutes')
fline1.update_layout(title='<span style="color:red">Predicted Commute Time</span> = 142.45 - 8.19 * Departure Hour')
fline1.update_layout(width=700, margin={'t': 60})

Now that we have $w_0^*$ and $w_1^*$, we can use them to make predictions.

In [9]:
# The predicted commute time if I leave at 8:30AM.
w0_star + w1_star * 8.5
Out[9]:
72.85923693147151

Finding the Regression Line, Using the Normal Equations¶


Using our linear algebraic formulation, the optimal intercept and slope are given by the vector $\vec{w}^*$, where:

$$\vec{w}^* = ({X^TX})^{-1} X^T\vec{y}$$

Here:

  • $X$ is a $n \times 2$ matrix, called the design matrix, defined as:
$${ X} = \begin{bmatrix} { 1} & { x_1} \\ { 1} & { x_2} \\ \vdots & \vdots \\ { 1} & { x_n} \end{bmatrix}$$
  • $\vec{y}$ is a $n$-dimensional vector, called the observation vector, defined as:
$$\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Let's construct $X$ and $y$ in code.

First, the design matrix.

In [10]:
# Create a new DataFrame by taking the 'departure_hour' column from df.
X = df[['departure_hour']].copy()
X
Out[10]:
departure_hour
0 10.82
1 7.75
2 8.45
... ...
62 7.58
63 7.45
64 7.60

65 rows × 1 columns

In [11]:
# Add a column of all 1s to X.
X['1'] = 1
X
Out[11]:
departure_hour 1
0 10.82 1
1 7.75 1
2 8.45 1
... ... ...
62 7.58 1
63 7.45 1
64 7.60 1

65 rows × 2 columns

In [12]:
# Change the order of the columns and convert to an array.
X = X[['1', 'departure_hour']].to_numpy()
X
Out[12]:
array([[ 1.  , 10.82],
       [ 1.  ,  7.75],
       [ 1.  ,  8.45],
       ...,
       [ 1.  ,  7.58],
       [ 1.  ,  7.45],
       [ 1.  ,  7.6 ]])

$\vec{y}$ is already created for us: it's just the 'minutes' column in df.

In [13]:
y = df['minutes'].to_numpy()
y
Out[13]:
array([68., 94., 63., ..., 68., 90., 83.])

Now, let's implement:

$$\vec{w}^* = ({X^TX})^{-1} X^T\vec{y}$$
In [14]:
# The @ symbol performs matrix multiplication!
w_star_linalg = np.linalg.inv(X.T @ X) @ X.T @ y 
w_star_linalg
Out[14]:
array([142.45,  -8.19])

These numbers look familiar!

In [15]:
# Old formulas.
w0_star, w1_star
Out[15]:
(142.44824158772875, -8.186941724265557)

Indeed, they're exactly the same as the w0_star and w1_star we found using our old formulas.

Making Predictions¶


We know how to make predictions with the old formulas:

In [16]:
# The predicted commute time if I leave at 8:30AM.
w0_star + w1_star * 8.5 
Out[16]:
72.85923693147151

How do we make predictions with the new formulas?

To find the predicted commute time for every departure hour in our dataset, we can multiply $X$ by the optimal parameter vector, $\vec{w}^*$.

$$\vec{h}^* = X \vec{w}^*$$

$\vec{h}^*$ above is the optimal hypothesis vector.

In [17]:
all_preds = X @ w_star_linalg 
all_preds
Out[17]:
array([53.89, 79.  , 73.27, ..., 80.36, 81.46, 80.23])

To make a prediction for a single data point, we must take the dot product of the optimal parameter vector, $\vec{w}^*$ (w_star_linalg) with a vector of the form $\begin{bmatrix} 1 & x_\text{new} \end{bmatrix}^T$, since this is what the rows of $X$ look like.

In [18]:
# Also the predicted commute time if I leave at 8:30AM.
np.dot(w_star_linalg, np.array([1, 8.5])) 
Out[18]:
72.85923693147129

This gives us the same prediction as before!

Multiple Linear Regression¶


Previously, with simple linear regression, our goal was to fit a hypothesis function of the form:

$$\begin{align*}\text{pred. commute} &= H(\text{departure hour}) \\ &= w_0 + w_1 \cdot \text{departure hour} \end{align*}$$

Now, we'll try and fit a linear regression model of the form:

$$\begin{align*}\text{pred. commute} &= H(\text{departure hour}) \\ &= w_0 + w_1 \cdot \text{departure hour} + w_2 \cdot \text{day of month} \end{align*}$$
In [19]:
df['date']
Out[19]:
0     5/15/2023
1     5/16/2023
2     5/22/2023
        ...    
62     3/4/2024
63     3/5/2024
64     3/7/2024
Name: date, Length: 65, dtype: object
In [20]:
df['day_of_month'] = pd.to_datetime(df['date']).dt.day
In [21]:
df[['departure_hour', 'day_of_month', 'minutes']]
Out[21]:
departure_hour day_of_month minutes
0 10.82 15 68.0
1 7.75 16 94.0
2 8.45 22 63.0
... ... ... ...
62 7.58 4 68.0
63 7.45 5 90.0
64 7.60 7 83.0

65 rows × 3 columns

Let's create our new design matrix, $X$:

$$X = \begin{bmatrix} 1 & \text{departure hour}_1 & \text{day}_1 \\ 1 & \text{departure hour}_2 & \text{day}_2 \\ ... & ... & ... \\ 1 & \text{departure hour}_n & \text{day}_n \end{bmatrix}$$
In [22]:
X = df[['departure_hour', 'day_of_month']].copy()
X['1'] = 1
X = X[['1', 'departure_hour', 'day_of_month']].to_numpy()
X
Out[22]:
array([[ 1.  , 10.82, 15.  ],
       [ 1.  ,  7.75, 16.  ],
       [ 1.  ,  8.45, 22.  ],
       ...,
       [ 1.  ,  7.58,  4.  ],
       [ 1.  ,  7.45,  5.  ],
       [ 1.  ,  7.6 ,  7.  ]])
In [23]:
w_star_multiple = np.linalg.inv(X.T @ X) @ X.T @ y 
w_star_multiple
Out[23]:
array([141.86,  -8.22,   0.06])

What do our predictions look like, for each row of the dataset?

In [24]:
XX, YY = np.mgrid[5:14:1, 0:31:1]
Z = w_star_multiple[0] + w_star_multiple[1] * XX + w_star_multiple[2] * YY
plane = go.Surface(x=XX, y=YY, z=Z, colorscale='Reds')
fig = go.Figure(data=[plane])
fig.add_trace(go.Scatter3d(x=df['departure_hour'], 
                           y=df['day_of_month'], 
                           z=df['minutes'], mode='markers', marker = {'color': '#656DF1'}))
fig.update_layout(scene=dict(xaxis_title='Departure Hour',
                             yaxis_title='Day of Month',
                             zaxis_title='Minutes'),
                  title='Commute Time vs. Departure Hour and Day of Month',
                  width=1000, height=500)

How do we make predictions for new datapoints?

In [25]:
# The predicted commute time if I leave at 8:30AM on the 15th of the month.
np.dot(w_star_multiple, np.array([1, 8.5, 15]))
Out[25]:
72.80767679746616
In [26]:
# The predicted commute time if I leave at 8:30AM on the 30th of the month.
np.dot(w_star_multiple, np.array([1, 8.5, 30]))
Out[26]:
73.65007448594321